11 класс. Химия.Типы химических реакций. Окислительно-восстановительные реакции. Понятие о скорости химической реакции. Обратимые реакции

11 класс. Химия.Типы химических реакций. Окислительно-восстановительные реакции. Понятие о скорости химической реакции. Обратимые реакции

Комментарии преподавателя

1. Понятие ОВР, определение окислителей и восстановителей

Реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными. Изменение степеней окисления происходит из-за перехода электронов от восстановителя к окислителю. Степень окисления – это формальный заряд атома, если считать, что все связи в соединении являются ионными.

Окислитель – это вещество, молекулы или ионы которого принимает электроны. Если элемент является окислителем, его степень окисления понижается.

О02 +4е-→ 2О-2 (Окислитель, процесс восстановления)

Процесс приема веществами электронов называется восстановлением. Окислитель в ходе процесса восстанавливается.

Восстановитель – это вещество, молекулы или ионы которого отдают  электроны. У восстановителя степень окисления повышается.

S0 -4е- →S+4 (Восстановитель, процесс окисления)

Процесс отдачи электронов называется окислением. Восстановитель в ходе процесса окисляется.

2. Составление схемы электронного баланса

Пример №1. Получение хлора в лаборатории

В лаборатории хлор получают из перманганата калия и концентрированной соляной кислоты. В колбу Вюрца помещают кристаллы перманганата калия. Закрывают колбу пробкой с капельной воронкой. В воронку наливается соляная кислота. Соляная кислота приливается из капельной воронки. Сразу же начинается энергичное выделение хлора. Через газоотводную трубку хлор постепенно заполняет цилиндр, вытесняя из него воздух. Рис. 1.

Рис. 1

На  примере этой реакции рассмотрим, как составлять электронный баланс.                        

1. Запишем схему этой реакции:

KMnO4 +  HCI = KCI + MnCI2 + CI2 + H2O

2. Расставим степени окисления всех элементов  в веществах, участвующих в реакции:

K+Mn+7O-24 +  H+CI- = K+CI- + Mn+2CI-2 + CI02 + H+2O-2

Степени окисления поменяли марганец и хлор.

3. Составляем схему, отражающую процесс перехода электронов:

Mn+7+5е- = Mn+2 окислитель, процесс восстановление

2 CI- -2е- = CI02   восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное  для чисел 5 и 2. Это 10. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

Mn+7+5е- = Mn+2  2

2 CI- -2е- = CI02     5

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

2KMnO4 + ? HCI = ?KCI + 2MnCI2 + 5CI2 +? H2O

Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе. Поэтому нужно уравнять количество ионов, не участвующих в окислительно-восстановительной реакции. А именно катионов калия, водорода и хлоридных анионов. В результате получается следующее уравнение:

2KMnO4 + 16 HCI = 2KCI + 2MnCI2 + 5CI2 + 8H2O

Пример №2. Взаимодействие меди с концентрированной азотной кислотой. Рис. 2.

В стакан с 10 мл кислоты поместили «медную» монету. Быстро началось выделение бурого газа (особенно эффектно выглядели бурые пузырьки в еще бесцветной жидкости). Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться. Монета полностью не растворилась, но сильно потеряла в толщине (ее можно было изогнуть пальцами). Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты.

Рис. 2

1. Запишем схему этой реакции:

Cu + HNO3 = Cu (NO3)2 + NO2↑ + H2O

2. Расставим степени окисления всех элементов  в веществах, участвующих в реакции:

Cu0 + H+N+5O-23 = Cu+2(N+5O-23)2 + N+4O-22↑ + H+2O-2

Степени окисления поменяли медь и азот.

3. Составляем схему, отражающую процесс перехода электронов:

N+5+е- = N+4 окислитель, процесс восстановление

Cu0 -2е- = Cu+2  восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 1 и 2. Это 2. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

N+5+е- = N+4    2

Cu0 -2е- = Cu+2               1

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

Cu + ?HNO3 = Cu (NO3)2 + 2NO2↑ + 2H2O

Азотная кислота участвует не только в окислительно-восстановительной реакции, поэтому коэффициент сначала не пишется. В результате, окончательно получается следующее уравнение:

Cu + 4HNO3 = Cu (NO3)2 + 2NO2↑+ 2H2O

3. Классификация ОВР

Классификация окислительно-восстановительных реакций

1. Межмолекулярные окислительно-восстановительные реакции.

Это реакции, в которых окислителем и восстановителем являются разные вещества.

Н2S-2 + Cl02 → S0 + 2HCl-

2. Внутримолекулярные реакции, в которых окисляющиеся и останавливающиеся атомы находятся в молекулах одного и того же вещества, например:   

2H+2O-2 → 2H02 + O02

3. Диспропорционирование (самоокисление-самовосстановление) – реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl02 + H2O → HCl+O + HCl-

4. Конпропорционирование (Репропорционирование) – реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления

5. N-3H4N+5O3 → N+2O + 2H2O

4. Основные окислители и восстановители

Важнейшие окислители и восстановители.

Основные окислители и восстановители приведены в таблице 1.

Восстановители

Окислители

1. Простые вещества – металлы

1. Простые вещества – неметаллы: галогены, кислород, озон

2. Простые вещества – неметаллы (С, Н2, Si)

2. Оксиды металлов в высоких степенях окисления CrO3, Mn2O7, MnO2, PbO2

3. Пероксид водорода Н2О2

3. Пероксид водорода Н2О2

4. Оксиды неметаллов (NO, SO2, CO и др.)

4. Кислородсодержащие кислоты и их соли: азотная, серная, марганцевая и др.

5. Кислородсодержащие кислоты: сернистая, азотистая, фосфористая и их соли

5. Соли кислот хрома: хроматы, дихроматы, кислородные кислоты хлора: хлорноватистая HClO, хлорноватая HClO3, хлорная HClO4 и их соли.

6. Бескислородные кислоты: сероводородная, хлороводородная и др. и их соли

6. Соли некоторых металлов в высоких степенях окисления: AgNO3, CuSO4 и др.

7. Соли, в которых металлы находятся не в высших степенях окисления: SnCl2, FeSO4, Cr2(SO4)3,MnSO4 и др.

8. Аммиак NH3

Табл. 1. Основные окислители и восстановители

5. Факторы, влияющие на продукты окисления

Факторы, влияющие на конечные продукты реакции

При протекании окислительно-восстановительных реакций, конечные продукты зависят от многих факторов.

· Состав реагирующих веществ

· Температура

· Концентрация

· Кислотность среды

Рассмотрим это в случае реакции с перманганатом калия. Продукты его восстановления зависят от кислотности среды, что можно изобразить схемой:

+Н+       Mn2+

КMnO4+восстановитель                   +Н2О  MnO2

+ОН-    MnO2-4

Например, при взаимодействии перманганата калия с нитритом калия в кислой среде

2KMn+7O4          +5KN+3O2          +3H2S O4       = 2Mn+2 S O4 +5KN+5 O3 + 3H2O

окислитель      восстановитель    среда

Красно-фиолетовая окраска раствора переходит в бесцветную окраску.

В нейтральной среде образуется MnO2 и окраска меняется с красно-фиолетовой на коричневую.

2KMn+7O4             +3KN+3O2            +H2O     = 2Mn+4O2 +3KN+5 O3 +2КOH

окислитель         восстановитель         среда

В щелочной среде при восстановлении перманганата калия образуется манганат калия K2 MnO4, который окрашен в зеленый цвет.

2KMn+7O4          +KN+3O2 +         2КOH = 2К2Mn+6O4 +KN+5O3 + H2O

окислитель     восстановитель      среда

Окислительно-восстановительные процессы происходят в живых организмах, они широко распространены в природе: деятельность вулканов, грозовые разряды и др. многие технологические процессы основаны на окислении и восстановлении. Это и получение металлов, горение, синтез оксидов серы и азота при производстве кислот, получение аммиака.

Подведение итога урока

В ходе урока была изучена тема «Окислительно-восстановительные реакции». Вы узнали определение данных реакций, их отличия от реакций других типов. Вспомнили, что такое степень окисления, окислитель и восстановитель. Учились составлять схемы электронного баланса для окислительно-восстановительных реакций, познакомились с классификацией окислительно-восстановительных реакций.

1. Понятие электролиза

Электролиз – это окислительно-восстановительная реакция, которая протекает под действием электрического тока на электродах, погруженных в раствор или расплав электролита.

Существует два типа электродов.

 Анод – это электрод, на котором происходит окисление.

 Катод – это электрод, на котором происходит восстановление. К аноду стремятся анионы, так как он имеет положительный заряд. К катоду стремятся катионы, потому что он заряжен отрицательно и, согласно законам физики, разноименные заряды притягиваются. В любом электрохимическом процессе присутствуют оба электрода. Прибор, в котором осуществляется электролиз, называется электролизер. Рис. 1.

  Рис. 1

2. Электролиз расплава

I. Процессы, происходящие при электролизе расплавов электролитов

В расплавах электролиты диссоциируют на ионы. Это термическая диссоциация электролитов. При пропускании электрического тока катионы восстанавливаются на катоде, так как принимают от него электроны. Анионы кислотного остатка и гидроксид-анионы окисляются на катоде, так как отдают ему свои электроны.

Пример №1. Электролиз расплава хлорида натрия

При термической диссоциации хлорида натрия образуются ионы натрия и хлора.

Na Cl  →  Na+ +  Cl−

–  на катоде выделяется натрий:

2 Na+ + 2 e− → 2 Na

–  на аноде выделяется хлор:

2 Cl− − 2 e− → Cl2

– суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 2)

2 Na+ + 2 Cl− → 2 Na0 + Cl02

–  суммарная реакция:

2 NaCl 2 Na + Cl2

Пример №2. Электролиз расплава гидроксида калия

При  диссоциации гидроксида калия образуются ионы калия и гидроксид ионы.

КОН  →  К+ +  ОН−

–  на катоде выделяется калий:

К+ + 1 e− →  К

–  на аноде выделяется кислород и вода:

4ОН− − 4 e− → О2 + 2Н2О

–  суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 4)

4К+ + 4ОН− → 4 К0 + О2 + 2Н2О

–  суммарная реакция:

4КОН 4 К0 + О2 + 2Н2О

Пример №3. Электролиз расплава сульфата натрия

При диссоциации расплава сульфата натрия образуются ионы натрия и сульфат-ионы.

Na2SO4  →  2Na+ + SО42−

– на катоде выделяется натрий:

Na+ + 1 e− →  Na

– на аноде выделяется кислород  и оксид серы (VI):

2SО42− − 4 e− → 2SО3 +О2

–  суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 4)

4 Na+ + 2SО42− → 4 Na 0 + 2SО3 +О2

– суммарная реакция:

4 Na2SO44 Na 0 + 2SО3 +О2

Закономерности электролиза расплавов электролита

1. При электролизе расплавов щелочей и солей на катоде осаждается металл.

2. Анионы бескислородных кислот окисляются на аноде, давая соответствующее соединение, например, хлорид-анионы образуют хлор.

3. Анионы кислородсодержащих кислот образуют соответствующий оксид и кислород.

3. Электролиз раствора

II. Процессы, происходящие при электролизе растворов электролитов

При электролизе растворов электролитов, кроме интересующих нас соединений есть еще и вода, которая также может подвергаться электролизу. Поэтому, исходя из строения соединения, электролиз может протекать либо с ионами соли, либо с водой.

Процессы, происходящие на катоде

1.  Катионы активных металлов, стоящие в ряду напряжений до алюминия, не разряжаются на катоде. См. рис. 2. В этом случае происходит только восстановление воды.

Рис. 2

2Н2О+2 e− → Н2 + 2ОН−

2.  Катионы металлов, расположенных в ряду напряжений от алюминия до водорода, разряжаются в той или иной степени одновременно с молекулами воды. При этом одновременно происходят следующие процессы:

Men++ne- → Me

2Н2О+2 e− → Н2 + 2ОН−

3.  При наличии в растворе катионов металлов, расположенных в ряду напряжений после водорода, на катоде, прежде всего, происходит восстановление катионов этих металлов. Men++ne- →Me

Процессы, происходящие на аноде

Различают два типа анодов: инертный и активный. Инертный анод – это анод, материал которого не окисляется в процессе электролиза (Pt). Активный анод – это анод, который окисляется в процессе электролиза. Например, графит.

Электролиз с инертным анодом

В анодном процессе могут принимать участие анионы некоторых бескислородных кислот Cl- ,Br- ,I-, S2-и гидроксид-ионы ОН -( разряжаются только эти анионы), например:

2Br- - 2е- →Br2;  4ОН− − 4 e− → О2 +2Н2О (в щелочной среде)

Если в растворе присутствуют анионы F-,SO2-4, NO-3, PO43-, CO32- и некоторые другие, то окислению подвергается только вода:

2Н2О - 4 e− → О2 + 4Н+(в нейтральной и кислой среде)

Электролиз с активным анодом

В случае с активным анодом, число конкурирующих окислительных процессов увеличивается до трех:

- Электрохимическое окисление материала анода

- Окисление воды с выделением кислорода

- Окисление анионов растворенного соединения

Написание таких процессов рассматривается в высшей школе.

4. Примеры написания уравнений электролиза

Приведем примеры электролиза раствора некоторых веществ.

Пример №1. Электролиз раствора хлорида натрия

При диссоциации хлорида натрия образуются ионы натрия и хлора.

Na Cl  →  Na+ +  Cl−

– Катодный процесс:

2Н2О+2 e− → Н2 + 2ОН−

– Анодный процесс:

2 Cl− − 2 e− → Cl2

– суммарное ионное уравнение реакции

2Н2О + 2 Cl− → Н2 + 2ОН−+ Cl02

– суммарная реакция:

2Н2О +2 NaCl 2NaОН + Cl2↑ + Н2↑

По этой реакции получается гидроксид натрия и хлор.

Пример №2. Электролиз раствора сульфата меди (II).

– на катоде выделяется медь:

Сu2+ + 2 e− →  Cu0

–  на аноде выделяется кислород  

2Н2О - 4 e− → О2 + 4Н+

– суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 2)

2Сu2+ + 2Н2О → 2 Cu0+ О2 + 4Н+

–  суммарная реакция:

2CuSO4 + 2Н2О  2Cu 0+О2+ 2H2SO4

Пример №3. Электролиз раствора нитрата калия

При  диссоциации нитрата калия образуются ионы калия и нитрат-ионы.

КNO3 → К+ +  NО3−

–  Катодный процесс:

2Н2О+2 e− → Н2 + 2ОН−

–  Анодный процесс:

2Н2О - 4 e− → О2 + 4Н+

– суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 2)

2Н2О  О2 ↑+2Н2↑

Это один из способов получения водорода.

Электролиз находит применение во многих отраслях промышленности: химической, металлургии, для изготовления деталей требуемой формы, для электрохимического покрытия металлов.

Подведение итога урока

 На уроке была рассмотрена тема «Электролиз» из школьного курса химии 11 класса. В процессе занятия  анализировались процессы, происходящие при электролизе расплавов и растворов электролитов. Были даны определения процесса электролиза, введено понятие о двух типах электродов.

источник видео - http://www.youtube.com/watch?v=fYxYmv1Jf38

источник презентации - http://prezentacii.com/po_himii/11020-klassifikaciya-himicheskih-reakciy-11-klass.html

источник презентации - http://ppt4web.ru/khimija/okislitelnovosstanovitelnye-reakcii3.html

источник презентации - http://mirhimii.ru/11class/185-skorost-himicheskoy-reakcii.html

источник презентации - http://videouroki.net/filecom.php?fileid=98663605

Файлы