10 класс. Химия. Особенности свойств анилина. Получение и применение аминов
10 класс. Химия. Особенности свойств анилина. Получение и применение аминов
Комментарии преподавателя
Анилин как представитель ароматических аминов.
Амины – азотсодержащие органические вещества, производные аммиака (NH3), в молекулах которых один или несколько атомов водорода замещены на углеводородный радикал (- R или – CnH2n+1) 2. Функциональная группа: - NH2 аминогруппа 3. Классификация аминов: 4. Нахождение аминов в природе Амины широко распространены в природе, так как образуются при гниении живых организмов. Например, с триметиламином вы встречались неоднократно. Запах селедочного рассола обусловлен именно этим веществом. Обиходное словосочетание “трупный яд”, встречающиеся в художественной литературе, связано с аминами. 5. Номенклатура аминов 1. В большинстве случаев названия аминов образуют из названий углеводородных радикалов и суффикса амин. CH3-NH2 Метиламин CH3-CH2-NH2 Этиламин Различные радикалы перечисляются в алфавитном порядке. CH3-CH2-NH-CH3 Метилэтиламин При наличии одинаковых радикалов используют приставки ди и три. (CH3)2NH Диметиламин 2. Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2. В этом случае аминогруппа указывается в названии суффиксами амин (одна группа -NH2), диамин(две группы -NH2) и т.д. с добавлением цифр, отражающих положение этих групп в главной углеродной цепи. Например: CH3-CH2-CH2-NH2 пропанамин-1 H2N-CH2-CH2-CH(NH2)-CH3 бутандиамин-1,3 6. Изомерия аминов Структурная изомерия - углеродного скелета, начиная с С4H9NH2: - положения аминогруппы, начиная с С3H7NH2: - изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте, т.е. между типами аминов: Пространственная изомерия Возможна оптическая изомерия, начиная с С4H9NH2: 7. Получение аминов Из-за запаха низшие амины долгое время принимали за аммиак, пока в 1849 году французский химик Шарль Вюрц не выяснил, что в отличие от аммиака, они горят на воздухе с образованием углекислого газа. Он же синтезировал метиламин и этиламин. 1842 г Н. Н. Зинин получил анилин восстановлением нитробензола - в промышленности Восстановление нитросоединений: R-NO2 + 6[H] t,kat-Ni → R-NH2 + 2H2O или R-NO2+3(NH4)2S t, Fe в кислой среде →R-NH2 +3S↓ +6NH3↑ + 2H2O (р. Зинина) Другие способы: 1). Промышленный CH3Br + 2NH3 t, ↑p → CH3-NH2 + NH4Br 2). Лабораторный - Действие щелочей на соли алкиламмония (получение первичных, вторичных, третичных аминов): [R-NH3]Г + NaOH t → R-NH2 + NaГ + H2O 3). Действием галогеналканов на первичные алифатические и ароматические аминыполучают вторичные и третичные амины, в том числе, смешанные. 8. Физические свойства аминов Метиламин, диметиламин и триметиламин — газы, средние члены алифатического ряда - жидкости, высшие — твердые вещества. Низшие амины имеют характерный «рыбный» запах, высшие не имеют запаха. Связь N–H является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи (несколько более слабые, чем Н-связи с участием группы О–Н). Это объясняет относительно высокую температуру кипения аминов по сравнению с неполярными соединениями со сходной молекулярной массой. Например: Третичные амины не образуют ассоциирующих водородных связей (отсутствует группа N–H). Поэтому их температуры кипения ниже, чем у изомерных первичных и вторичных аминов (триэтиламин кипит при 89 °С, а н-гексиламин – при 133 °С). По сравнению со спиртами алифатические амины имеют более низкие температуры кипения (т. кип. метиламина -6 °С, т. кип. метанола +64,5 °С). Это свидетельствует о том, что амины ассоциированы в меньшей степени, чем спирты, поскольку прочность водородных связей с атомом азота меньше, чем с участием более электроотрицательного кислорода. При обычной температуре только низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха. Ароматические амины – бесцветные высококипящие жидкости или твердые вещества. Амины способны к образованию водородных связей с водой: Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины в воде практически не растворяются. Анилин (фениламин) С6H5NH2 – важнейший из ароматических аминов: Анилин представляет собой бесцветную маслянистую жидкость с характерным запахом (т. кип. 184 °С, т. пл. – 6 °С). На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит. ВИДЕО: Изучение физических свойств анилина 9. Свойства аминов I. Основные свойства Для аминов характерны основные свойства, которые обусловлены наличием не поделённой электронной пары на атоме азота Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I-эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном. Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его π-электронами. Ряд увеличения основных свойств аминов:
В растворах оснoвные свойства третичных аминов проявляются слабее, чем у вторичных и даже первичных аминов, так как три радикала создают пространственные препятствия для сольватации образующихся аммониевых ионов. По этой же причине основность первичных и вторичных аминов снижается с увеличением размеров и разветвленности радикалов. Водные растворы аминов имеют щелочную реакцию (амины реагируют с водой по донорно-акцепторному механизму): R-NH2 + H2O → [R-NH3]+ + OH- ион алкиламмония ВИДЕО: Получение гидроксида диметиламмония и изучение его свойств Анилин с водой не реагирует и не изменяет окраску индикатора!!! ВИДЕО: Изучение среды раствора анилина Взаимодействие с кислотами (донорно-акцепторный механизм): CH3-NH2 + H2SO4 → [CH3-NH3]HSO4 (соль - гидросульфат метиламмония) 2CH3-NH2 + H2SO4 → [CH3-NH3]2SO4 (соль - сульфат метиламмония) Соли неустойчивы, разлагаются щелочами: [CH3-NH3]2SO4 + 2NaOH → 2CH3-NH2 ↑ + Na2SO4 + H2O Способность к образованию растворимых солей с последующим их разложением под действием оснований часто используют для выделения и очистки аминов, не растворимых в воде. Например, анилин, который практически не растворяется в воде, можно растворить в соляной кислоте и отделить нерастворимые примеси, а затем, добавив раствор щелочи (нейтрализация водного раствора), выделить анилин в свободном состоянии. II. Реакции окисленияРеакция горения (полного окисления) аминов на примере метиламина: 4СH3NH2 + 9O2 → 4CO2 + 10H2O + 2N2 Ароматические амины легко окисляются даже кислородом воздуха. Являясь в чистом виде бесцветными веществами, на воздухе они темнеют. Неполное окисление ароматических аминов используется в производстве красителей. Эти реакции обычно очень сложны. ВИДЕО: Получение диметиламина и его горение III. Особые свойства анилина Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. 1). Для анилина характерны свойства бензольного кольца – действие аминогруппы на бензольное кольцо приводит к увеличению подвижности водорода в кольце в орто- и пара- положениях: С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол.
|
Источники
https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no53-aminy-stroenie-i-svojstva-aminov-predelnogo-rada-anilin-kak-predstavitel-aromaticeskih-aminov
Файлы
Нет дополнительных материалов для этого занятия.