11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

Цилиндр называется описанным около призмы, если многоугольники оснований призмы вписаны в окружности оснований цилиндра, а образующие цилиндра ...

Комментарии преподавателя

 Цилиндр, вписанный в призму

Го­во­рят, что ци­линдр впи­сан в приз­му (или приз­ма опи­са­на около ци­лин­дра), если ос­но­ва­ния ци­лин­дра впи­са­ны в со­от­вет­ству­ю­щие ос­но­ва­ния приз­мы (рис. 1). Оче­вид­но, что их вы­со­ты сов­па­дут (рис. 2).

Рис. 1. Ци­линдр, впи­сан­ный в приз­му

Рис. 2. Ци­линдр, впи­сан­ный в приз­му

 Условия, при которых цилиндр можно вписать в призму

Нужно, чтобы в ос­но­ва­ние приз­мы можно было впи­сать окруж­ность. Что для тре­уголь­ной и пра­виль­ной приз­мы верно все­гда (рис. 3, 4).

Рис. 3. Ци­линдр, впи­сан­ный в тре­уголь­ную приз­му

Рис. 4. Ци­линдр, впи­сан­ный в пра­виль­ную ше­сти­уголь­ную приз­му

Вывод: ци­линдр можно впи­сать в приз­му, если приз­ма пря­мая, а в ее ос­но­ва­ние можно впи­сать окруж­ность.

Для че­ты­рех­уголь­ный приз­мы необ­хо­ди­мо чтобы приз­ма была также пря­мой, а че­ты­рех­уголь­ник в ос­но­ва­нии был опи­сан­ным. Т. е. суммы про­ти­во­по­лож­ных сто­рон были равны (рис. 5).

Рис. 5. Ци­линдр, впи­сан­ный в че­ты­рех­уголь­ную приз­му

 Задача №1

Усло­вие: в пра­виль­ную тре­уголь­ную приз­му, все ребра ко­то­рой равны 6, впи­сан ци­линдр. Найти его ра­ди­ус и вы­со­ту (рис. 6).

Рис. 6. Ил­лю­стра­ция к за­да­че 1

Ре­ше­ние

За­ме­тим, что вы­со­та ци­лин­дра равна вы­со­те приз­мы, а зна­чит, равна 6.

Ра­ди­ус ос­но­ва­ния ци­лин­дра равен ра­ди­у­су окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник со сто­ро­ной 6. Ра­ди­ус этой окруж­но­сти на­хо­дим по фор­му­ле , то есть он равен 

Ответ: .

 Цилиндр, описанный около призмы

Го­во­рят, что ци­линдр можно опи­сать около приз­мы (или приз­му впи­сать в ци­линдр), если ос­но­ва­ния приз­мы впи­са­ны в ос­но­ва­ния ци­лин­дра. В дан­ном слу­чае, оче­вид­но, снова будут равны вы­со­ты (бо­ко­вые сто­ро­ны приз­мы и об­ра­зу­ю­щие ци­лин­дра) (рис. 7).

Рис. 7. Ци­линдр, опи­сан­ный около приз­мы

 Условия, при которых цилиндр можно описать около призмы

Ци­линдр можно опи­сать около приз­мы, когда ос­но­ва­ние приз­мы можно впи­сать в окруж­ность. Для тре­уголь­ной -уголь­ной пра­виль­ной приз­мы – все­гда, для че­ты­рех­уголь­ной – когда сумма про­ти­во­по­лож­ных углов в ос­но­ва­нии дает 180 гра­ду­сов (рис. 8).

Рис. 8. Ци­линдр, опи­сан­ный около че­ты­рех­уголь­ной приз­мы

 Задача №2

Усло­вие: дана пра­виль­ная ше­сти­уголь­ная приз­ма, впи­сан­ная в ци­линдр. Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 7, а пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28. Найти пло­щадь бо­ко­вой по­верх­но­сти приз­мы (рис. 9).

Рис. 9. Ил­лю­стра­ция к за­да­че 2

Ре­ше­ние

Спер­ва най­дем вы­со­ту ци­лин­дра. Так как , то .

Зна­чит, и бо­ко­вое ребро приз­мы также равно 2.

Далее, в ос­но­ва­нии приз­мы лежит пра­виль­ный ше­сти­уголь­ник, впи­сан­ный в окруж­ность. Как из­вест­но, сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка равна ра­ди­у­су опи­сан­ной окруж­но­сти, то есть 7.

Тогда пло­щадь бо­ко­вой по­верх­но­сти приз­мы равна .

Ответ: 84.

 Разветвление: задача №3

Усло­вие. Дана че­ты­рех­уголь­ная пря­мая приз­ма, все ребра ко­то­рой равны 1. Из­вест­но, что около этой приз­мы можно опи­сать ци­линдр. Най­ди­те объем приз­мы и пло­щадь пол­ной по­верх­но­сти дан­но­го ци­лин­дра (рис. 10).

Рис. 10. Ил­лю­стра­ция к за­да­че 3

Ре­ше­ние

Так как все ребра равны, то в ос­но­ва­нии приз­мы лежит ромб. Раз можно опи­сать ци­линдр около приз­мы, то ромб можно впи­сать в окруж­ность, а зна­чит, этот ромб – квад­рат. Сле­до­ва­тель­но, приз­ма – это куб со сто­ро­ной 1, его объем также равен 1.

Вы­со­та ци­лин­дра – 1, а ра­ди­ус окруж­но­сти равен по­ло­вине диа­го­на­ли квад­ра­та, то есть . Тогда .

Ответ: .

 Заключение

На уроке мы разо­бра­ли ком­би­на­ции приз­мы и ци­лин­дра, а также ре­ши­ли за­да­чи по темам: ци­линдр, опи­сан­ный во­круг приз­мы и ци­линдр, впи­сан­ный в приз­му.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/11-klass/btela-vraweniya-b/kombinatsiya-prizmy-i-tsilindra

http://www.youtube.com/watch?v=Oca9Qzhu0sI

http://www.youtube.com/watch?v=6S0SYzb98Hk

http://www.youtube.com/watch?v=W5LLg5EJJqI

http://www.youtube.com/watch?v=BOsAmz1hTbo

http://www.youtube.com/watch?v=jfZ6B4hvkjY

http://www.yaklass.ru/p/geometria/11-klass/tela-vrashcheniia-10442/tcilindr-9260/re-04ed80b8-bfe5-4f48-b571-3e5278f08ea8

http://схемо.рф/upload/sx/470/preview/8.jpg

http://1.bp.blogspot.com/-9N8xpfP3SOw/T1TOzXinW2I/AAAAAAAAA9Q/fEXKxGBY99I/s1600/Geom_1.jpg

http://cs405725.vk.me/v405725468/6209/cEdhWBPmpNQ.jpg

https://yandex.ru/images/search?p=4&text=%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8%20%D0%BD%D0%B0%20%D0%BA%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%86%D0%B8%D1%8E%20%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80%D0%B0%20%D0%B8%20%D0%BF%D1%80%D0%B8%D0%B7%D0%BC%D1%8B&img_url=http%3A%2F%2Fuslide.ru%2Fimages%2F12%2F18580%2F960%2Fimg6.jpg&pos=121&rpt=simage&_=1450898849842

Файлы