11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.

Цилиндр можно описать только около такой прямой призмы, около основания которой ....

Комментарии преподавателя

 Цилиндр, вписанный в призму

Го­во­рят, что ци­линдр впи­сан в приз­му (или приз­ма опи­са­на около ци­лин­дра), если ос­но­ва­ния ци­лин­дра впи­са­ны в со­от­вет­ству­ю­щие ос­но­ва­ния приз­мы (рис. 1). Оче­вид­но, что их вы­со­ты сов­па­дут (рис. 2).

Рис. 1. Ци­линдр, впи­сан­ный в приз­му

Рис. 2. Ци­линдр, впи­сан­ный в приз­му

 Условия, при которых цилиндр можно вписать в призму

Нужно, чтобы в ос­но­ва­ние приз­мы можно было впи­сать окруж­ность. Что для тре­уголь­ной и пра­виль­ной приз­мы верно все­гда (рис. 3, 4).

Рис. 3. Ци­линдр, впи­сан­ный в тре­уголь­ную приз­му

Рис. 4. Ци­линдр, впи­сан­ный в пра­виль­ную ше­сти­уголь­ную приз­му

Вывод: ци­линдр можно впи­сать в приз­му, если приз­ма пря­мая, а в ее ос­но­ва­ние можно впи­сать окруж­ность.

Для че­ты­рех­уголь­ный приз­мы необ­хо­ди­мо чтобы приз­ма была также пря­мой, а че­ты­рех­уголь­ник в ос­но­ва­нии был опи­сан­ным. Т. е. суммы про­ти­во­по­лож­ных сто­рон были равны (рис. 5).

Рис. 5. Ци­линдр, впи­сан­ный в че­ты­рех­уголь­ную приз­му

 Задача №1

Усло­вие: в пра­виль­ную тре­уголь­ную приз­му, все ребра ко­то­рой равны 6, впи­сан ци­линдр. Найти его ра­ди­ус и вы­со­ту (рис. 6).

Рис. 6. Ил­лю­стра­ция к за­да­че 1

Ре­ше­ние

За­ме­тим, что вы­со­та ци­лин­дра равна вы­со­те приз­мы, а зна­чит, равна 6.

Ра­ди­ус ос­но­ва­ния ци­лин­дра равен ра­ди­у­су окруж­но­сти, впи­сан­ной в пра­виль­ный тре­уголь­ник со сто­ро­ной 6. Ра­ди­ус этой окруж­но­сти на­хо­дим по фор­му­ле , то есть он равен 

Ответ: .

 Цилиндр, описанный около призмы

Го­во­рят, что ци­линдр можно опи­сать около приз­мы (или приз­му впи­сать в ци­линдр), если ос­но­ва­ния приз­мы впи­са­ны в ос­но­ва­ния ци­лин­дра. В дан­ном слу­чае, оче­вид­но, снова будут равны вы­со­ты (бо­ко­вые сто­ро­ны приз­мы и об­ра­зу­ю­щие ци­лин­дра) (рис. 7).

Рис. 7. Ци­линдр, опи­сан­ный около приз­мы

 Условия, при которых цилиндр можно описать около призмы

Ци­линдр можно опи­сать около приз­мы, когда ос­но­ва­ние приз­мы можно впи­сать в окруж­ность. Для тре­уголь­ной -уголь­ной пра­виль­ной приз­мы – все­гда, для че­ты­рех­уголь­ной – когда сумма про­ти­во­по­лож­ных углов в ос­но­ва­нии дает 180 гра­ду­сов (рис. 8).

Рис. 8. Ци­линдр, опи­сан­ный около че­ты­рех­уголь­ной приз­мы

 Задача №2

Усло­вие: дана пра­виль­ная ше­сти­уголь­ная приз­ма, впи­сан­ная в ци­линдр. Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 7, а пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28. Найти пло­щадь бо­ко­вой по­верх­но­сти приз­мы (рис. 9).

Рис. 9. Ил­лю­стра­ция к за­да­че 2

Ре­ше­ние

Спер­ва най­дем вы­со­ту ци­лин­дра. Так как , то .

Зна­чит, и бо­ко­вое ребро приз­мы также равно 2.

Далее, в ос­но­ва­нии приз­мы лежит пра­виль­ный ше­сти­уголь­ник, впи­сан­ный в окруж­ность. Как из­вест­но, сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка равна ра­ди­у­су опи­сан­ной окруж­но­сти, то есть 7.

Тогда пло­щадь бо­ко­вой по­верх­но­сти приз­мы равна .

Ответ: 84.

 Разветвление: задача №3

Усло­вие. Дана че­ты­рех­уголь­ная пря­мая приз­ма, все ребра ко­то­рой равны 1. Из­вест­но, что около этой приз­мы можно опи­сать ци­линдр. Най­ди­те объем приз­мы и пло­щадь пол­ной по­верх­но­сти дан­но­го ци­лин­дра (рис. 10).

Рис. 10. Ил­лю­стра­ция к за­да­че 3

Ре­ше­ние

Так как все ребра равны, то в ос­но­ва­нии приз­мы лежит ромб. Раз можно опи­сать ци­линдр около приз­мы, то ромб можно впи­сать в окруж­ность, а зна­чит, этот ромб – квад­рат. Сле­до­ва­тель­но, приз­ма – это куб со сто­ро­ной 1, его объем также равен 1.

Вы­со­та ци­лин­дра – 1, а ра­ди­ус окруж­но­сти равен по­ло­вине диа­го­на­ли квад­ра­та, то есть . Тогда .

Ответ: .

 Заключение

На уроке мы разо­бра­ли ком­би­на­ции приз­мы и ци­лин­дра, а также ре­ши­ли за­да­чи по темам: ци­линдр, опи­сан­ный во­круг приз­мы и ци­линдр, впи­сан­ный в приз­му.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/11-klass/btela-vraweniya-b/kombinatsiya-prizmy-i-tsilindra

http://www.youtube.com/watch?v=Oca9Qzhu0sI

http://www.youtube.com/watch?v=6S0SYzb98Hk

http://www.youtube.com/watch?v=W5LLg5EJJqI

http://www.youtube.com/watch?v=BOsAmz1hTbo

http://www.youtube.com/watch?v=jfZ6B4hvkjY

http://www.yaklass.ru/p/geometria/11-klass/tela-vrashcheniia-10442/tcilindr-9260/re-04ed80b8-bfe5-4f48-b571-3e5278f08ea8

http://схемо.рф/upload/sx/470/preview/8.jpg

http://1.bp.blogspot.com/-9N8xpfP3SOw/T1TOzXinW2I/AAAAAAAAA9Q/fEXKxGBY99I/s1600/Geom_1.jpg

http://cs405725.vk.me/v405725468/6209/cEdhWBPmpNQ.jpg

https://yandex.ru/images/search?p=4&text=%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8%20%D0%BD%D0%B0%20%D0%BA%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%86%D0%B8%D1%8E%20%D1%86%D0%B8%D0%BB%D0%B8%D0%BD%D0%B4%D1%80%D0%B0%20%D0%B8%20%D0%BF%D1%80%D0%B8%D0%B7%D0%BC%D1%8B&img_url=http%3A%2F%2Fuslide.ru%2Fimages%2F12%2F18580%2F960%2Fimg6.jpg&pos=121&rpt=simage&_=1450898849842

Файлы