5 класс. Математика. Десятичные дроби
5 класс. Математика. Десятичные дроби
Комментарии преподавателя
Упражнение. Как умножить число 25,78 на 10?
Десятичная запись данного числа – это сокращенная запись суммы. Необходимо расписать ее более подробно:
Таким образом, нужно умножить сумму. Для этого можно просто умножить каждое слагаемое:
Выходит, что.
Можно сделать вывод, что умножить десятичную дробь на 10 очень просто: нужно запятую сдвинуть вправо на одну позицию.
Упражнение. Умножить 25,486 на 100.
Умножить на 100 – это то же самое, что и умножить два раза на 10. Иными словами, необходимо сдвинуть запятую вправо два раза:
Деление на 10, 100...
Упражнение. Разделить 25,78 на 10.
Как и в предыдущем случае, необходимо представить число 25,78 в виде суммы:
Так как нужно поделить сумму, то это эквивалентно делению каждого слагаемого:
Итак, .
Выходит, чтобы разделить на 10, нужно запятую сдвинуть влево на одну позицию. Например:
Упражнение. Разделить 124,478 на 100.
Разделить на 100 – это то же самое, что два раза разделить на 10, поэтому запятая сдвигается влево на 2 позиции:
Правило умножения и деления на 10, 100,..
Если десятичную дробь нужно умножить на 10, 100, 1000 и так далее, нужно запятую сдвинуть вправо на столько позиций, сколько нулей у множителя.
И наоборот, если десятичную дробь нужно поделить на 10, 100, 1000 и так далее, нужно запятую сдвинуть влево на столько позиций, сколько нулей у множителя.
Примеры, когда необходимо перенести запятую, а цифр уже не осталось.
Умножить на 100 значит сдвинуть запятую вправо на две позиции.
После сдвига можно обнаружить, что после запятой уже нет цифр, а это значит, что дробная часть отсутствует. Тогда и запятая не нужна, число получилось целое.
Пример 2
Сдвигать нужно на 4 позиции вправо. Но цифр после запятой всего две. Стоит вспомнить, что для дроби 56,14 есть эквивалентная запись.
Теперь умножить на 10 000 не составляет труда:
Если не очень понятно, почему можно дописать два нуля к дроби в предыдущем примере, то дополнительное видео по ссылке сможет помочь в этом.
Эквивалентные десятичные записи
Запись 52 означает следующее:
Если впереди поставить 0, получим запись 052. Эти записи эквивалентны.
Можно ли поставить два нуля впереди? Да, эти записи эквивалентны.
Теперь посмотрим на десятичную дробь:
Если приписать ноль, то получается:
Эти записи эквивалентны. Аналогично можно приписать несколько нулей.
Таким образом, к любому числу можно приписать несколько нулей после дробной части и несколько нулей перед целой частью. Это будут эквивалентные записи одного и того же числа.
Пример 3
Так как происходит деление на 100, то необходимо сдвинуть запятую на 2 позиции влево. Слева от запятой не осталось цифр. Целая часть отсутствует. Такую запись часто используют программисты. В математике же, если целой части нет, то ставят ноль вместо нее.
Пример 4
Сдвигать нужно влево на три позиции, но позиций всего две. Если перед числом написать несколько нулей, то это будет эквивалентная запись.
То есть при сдвиге влево, если цифры кончились, необходимо восполнить их нулями.
Пример 5
В данном случае стоит помнить, что запятая всегда стоит после целой части. Тогда:
Умножение и деление на 0,1, 0,01...
Умножение и деление на числа 10, 100, 1000 – очень простая процедура. Точно так же дело обстоит и с числами 0,1, 0,01, 0,001.
Пример. Умножить 25,34 на 0,1.
Выполним запись десятичной дроби 0,1 в виде обыкновенной. Но умножить на – то же самое, что разделить на 10. Поэтому необходимо сдвинуть запятую на 1 позицию влево:
Аналогично умножить на 0,01 – это разделить на 100:
Пример. 5,235 разделить на 0,1.
Решение данного примера строится аналогичным образом: 0,1 выражается в виде обыкновенной дроби, а делить на – это все равно, что умножить на 10:
То есть чтобы поделить на 0,1, нужно запятую сдвинуть вправо на одну позицию, что равносильно умножению на 10.
Правило умножения и деления на 0,1, 0,01...
Умножить на 10 и разделить на 0,1 – это одно и то же. Запятую нужно сдвинуть вправо на 1 позицию.
Аналогично для 100, 1000 и так далее:
Разделить на 10 и умножить на 0,1 – это одно и то же. Запятую нужно сдвинуть вправо на 1 позицию:
Аналогично для 100, 1000 и так далее:
123,456:0,001 = 123 456
Правило деления десятичных дробей на натуральные числа.
Четыре одинаковых игрушки в сумме стоят 921 рубль 20 копеек. Сколько стоит одна игрушка (см. Рис. 1)?
Рис. 1. Иллюстрация к задаче
Решение
Для нахождения стоимости одной игрушки необходимо разделить данную сумму на четыре. Переведём сумму в копейки:
Ответ: стоимость одной игрушки 23030 копеек, то есть 230 рублей 30 копеек, или 230,3 рубля.
Можно решить данную задачу не переводя рубли в копейки, то есть разделить десятичную дробь на натуральное число: .
Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа, и поставить в частном запятую тогда, когда закончится деление целой части.
Делим в столбик так, как делят натуральные числа. После того как сносим цифру 2 (число десятых – первая цифра после запятой в записи делимого 921,20), в частном ставим запятую и продолжаем деление:
Ответ: 230,3 рубля.
Пример
Делим в столбик так, как делят натуральные числа. После того как сносим цифру 6 (число десятых – цифра после запятой в записи делимого 937,6), в частном ставим запятую и продолжаем деление:
Ответ: .
Пример
Если делимое меньше делителя, то частное будет начинаться с нуля.
1 на 19 не делится, поэтому в частном ставим ноль. Деление целой части окончено, в частном ставим запятую. Сносим 7. 17 на 19 не делится, в частном пишем ноль. Сносим 6 и продолжаем деление:
Ответ: .
Деление десятичной дроби на 10, 100 и т.д.
1)
Делим так, как делят натуральные числа. В частном поставим запятую сразу, как снесем 8 – первую цифру после запятой в делимом 74,8. Продолжаем деление дальше. При вычитании получаем 8, но деление не окончено. Мы знаем, что в конце десятичной дроби можно приписывать нули – от этого значение дроби не изменится. Приписываем ноль и делим 80 на 10. Получаем 8 – деление окончено.
Ответ: .
2)
Ответ: .
Чтобы разделить десятичную дробь на 10, 100, 1000 и т.д., надо перенести запятую в этой дроби на столько цифр влево, сколько нулей стоит после единицы в делителе.
Пример
Чтобы умножить дробь на целое число, нужно умножать, не обращая внимания на запятую, затем в ответе вернуть запятую на место, то есть отделить ею столько же цифр в дробной части, сколько было в исходном числе.
Пример:
Выполняя умножение, не стоит обращать внимания на запятую.
Затем необходимо поставить запятую так, чтобы в дробной части получилось, как и раньше, 3 цифры.
Умножение десятичных дробей
Для умножения двух десятичных дробей принцип абсолютно такой же.
Правило
Чтобы перемножить две десятичные дроби, нужно их перемножить, не обращая внимания на запятые, затем в ответе отделить запятой столько цифр, сколько их было у обоих чисел вместе.
Пример 1
Сначала необходимо переписать каждую дробь в виде целого числа и вспомогательного множителя. Таким образом, каждая дробь будет представлена в виде произведения.
Затем нужно выполнить умножение целых чисел отдельно, вспомогательных множителей отдельно. Полученный результат нужно умножить на 0,001, то есть выполняется отделение запятой дробной части длиной в 3 цифры.
Пример 2
Нужно выполнить умножение, не обращая внимания на запятые. Количество цифр после запятой – 3, поэтому запятая ставится, отделяя 3 цифры. Последний ноль можно убрать из записи.
Пример 3
Выполняется умножение в столбик, при этом не обращая внимания на запятые, но помня, что в конце надо будет также отделить запятой 4 цифры.
Пример 4
В ходе урока мы уже выяснили, что умножать десятичные дроби технически означает просто умножать целые числа. Далее в ответе нужно отделить запятой знаков столько, сколько их было у всех чисел вместе.
Конечно, это правило распространяется и на случай нескольких множителей:
Деление десятичных дробей
Ситуация с делением десятичных дробей такая же: если уметь делить целые числа одно на другое, то тогда получится и десятичную дробь делить на другую десятичную дробь.
Пример
Когда заканчивается целое число, которое надо разделить, то ставится запятая и продолжается выполнение вычислений:
Пример
Здесь ситуация ровно такая же: как только кончается целая часть – ставится запятая:
То есть технически не важно, что делить на целое число – дробь или другое целое число. Алгоритм одинаковый.
Источник видео: https://www.youtube.com/watch?v=97n0NvNRPP0
https://www.youtube.com/watch?v=7kBzhp2Bzmo
Источник конспекта: http://interneturok.ru/ru/school/matematika/5-klass/umnozhenie-i-delenie-desyatichnyh-drobey/umnozhenie-i-delenie-desyatichnyh-drobey?konspekt&chapter_id=1898
Источник теста: http://testedu.ru/test/matematika/5-klass/dejstviya-s-desyatichnyimi-drobyami-2.html