8 класс. Геометрия. Четырехугольники. Трапеция.

8 класс. Геометрия. Четырехугольники. Трапеция.

Комментарии преподавателя

Тра­пе­ция

 1. Трапеция и её виды

Опре­де­ле­ние

Тра­пе­ция – это че­ты­рёх­уголь­ник, у ко­то­ро­го две сто­ро­ны па­рал­лель­ны, а две дру­гие – нет.

На Рис. 1. изоб­ра­же­на про­из­воль­ная тра­пе­ция.  – это бо­ко­вые сто­ро­ны (те, ко­то­рые не па­рал­лель­ны).  – ос­но­ва­ния (па­рал­лель­ные сто­ро­ны).

Рис. 1. Тра­пе­ция

Если срав­ни­вать тра­пе­цию с па­рал­ле­ло­грам­мом, то у па­рал­ле­ло­грам­ма две пары па­рал­лель­ных сто­рон. То есть па­рал­ле­ло­грамм не яв­ля­ет­ся част­ным слу­ча­ем тра­пе­ции, так как в опре­де­ле­нии тра­пе­ции чётко ска­за­но, что две сто­ро­ны тра­пе­ции не па­рал­лель­ны.

Вы­де­лим неко­то­рые виды тра­пе­ции (част­ные слу­чаи):

  • рав­но­бед­рен­ная (рав­но­бо­кая) тра­пе­ция: бо­ко­вые сто­ро­ны равны;
  • пря­мо­уголь­ная тра­пе­ция: один из углов равен  (из опре­де­ле­ния тра­пе­ции и свой­ства па­рал­лель­ных пря­мых сле­ду­ет, что два угла будут по ).

 2. Средняя линия трапеции и её свойства

Опре­де­ле­ние

Сред­няя линия тра­пе­ции – от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны бо­ко­вых сто­рон.

На Рис. 2. изоб­ра­же­на тра­пе­ция со сред­ней ли­ни­ей .

Рис. 2. Сред­няя линия тра­пе­ции

Свой­ства сред­ней линии тра­пе­ции:

1.      Сред­няя линия тра­пе­ции па­рал­лель­на ос­но­ва­ни­ям тра­пе­ции.

До­ка­за­тель­ство:

Пусть се­ре­ди­на бо­ко­вой сто­ро­ны  тра­пе­ции  – точка . Про­ве­дём через эту точку пря­мую, па­рал­лель­ную ос­но­ва­ни­ям. Эта пря­мая пе­ре­се­чёт вто­рую бо­ко­вую сто­ро­ну тра­пе­ции  в точке .

По по­стро­е­нию: . По тео­ре­ме Фа­ле­са из этого сле­ду­ет: . Зна­чит,  – се­ре­ди­на сто­ро­ны . Зна­чит,  – сред­няя линия.

До­ка­за­но.

2.      Сред­няя линия тра­пе­ции равна по­лу­сум­ме ос­но­ва­ний тра­пе­ции: .

До­ка­за­тель­ство:

Про­ве­дём сред­нюю линию тра­пе­ции и одну из диа­го­на­лей: на­при­мер,  (см. Рис. 3).

Рис. 3

По тео­ре­ме Фа­ле­са па­рал­лель­ные пря­мые от­се­ка­ют на сто­ро­нах угла про­пор­ци­о­наль­ные от­рез­ки. Так как равны от­рез­ки: . Зна­чит, от­ре­зок  яв­ля­ет­ся сред­ней ли­ни­ей тре­уголь­ни­ка , а от­ре­зок  – сред­ней ли­ни­ей тре­уголь­ни­ка .

Зна­чит, .

При­ме­ча­ние: это сле­ду­ет из свой­ства сред­ней линии тре­уголь­ни­ка: сред­няя линия тре­уголь­ни­ка па­рал­лель­на ос­но­ва­нию и равна его по­ло­вине. Пер­вая часть этого свой­ства до­ка­зы­ва­ет­ся ана­ло­гич­но с до­ка­за­тель­ством пер­во­го свой­ства сред­ней линии тра­пе­ции, а вто­рую часть можно до­ка­зать (к при­ме­ру, для сред­ней линии  тре­уголь­ни­ка ), про­ве­дя через точку  пря­мую, па­рал­лель­ную . Из тео­ре­мы Фа­ле­са будет сле­до­вать, что эта пря­мая будет яв­лять­ся сред­ней ли­ни­ей, а об­ра­зо­ван­ный че­ты­рёх­уголь­ник – па­рал­ле­ло­грам­мом (две пары по­пар­но па­рал­лель­ных сто­рон). От­сю­да уже неслож­но по­лу­чить тре­бу­е­мое свой­ство.

По­лу­ча­ем: .

До­ка­за­но.

Рас­смот­рим те­перь по­дроб­нее ос­нов­ные виды тра­пе­ции и их свой­ства.

 3. Признаки равнобедренной трапеции

На­пом­ним, что рав­но­бед­рен­ная тра­пе­ция – тра­пе­ция, у ко­то­рой бо­ко­вые сто­ро­ны равны. Рас­смот­рим свой­ства бо­ко­вой тра­пе­ции.

1.      Углы при ос­но­ва­нии рав­но­бед­рен­ной тра­пе­ции равны.

До­ка­за­тель­ство:

Вы­пол­ним стан­дарт­ное до­пол­ни­тель­ное по­стро­е­ние, ко­то­рое очень часто ис­поль­зу­ет­ся при ре­ше­нии раз­лич­ных задач на тра­пе­цию: про­ве­дём пря­мую  па­рал­лель­но бо­ко­вой сто­роне  (см. Рис. 4).

Рис. 4

 – па­рал­ле­ло­грамм.

От­сю­да сле­ду­ет, что: . Зна­чит, тре­уголь­ник  – рав­но­бед­рен­ный. А зна­чит, углы при его ос­но­ва­нии равны, то есть:  (по­след­ние два угла равны, как со­от­вет­ствен­ные при па­рал­лель­ных пря­мых ).

До­ка­за­но.

2.      Диа­го­на­ли рав­но­бед­рен­ной тра­пе­ции равны.

До­ка­за­тель­ство:

Для до­ка­за­тель­ства этого свой­ства вос­поль­зу­ем­ся преды­ду­щим. Дей­стви­тель­но, рас­смот­рим тре­уголь­ни­ки:  и  (см. Рис. 5.).

Рис. 5

 (по пер­во­му при­зна­ку ра­вен­ства тре­уголь­ни­ков: две сто­ро­ны и угол между ними).

Из этого ра­вен­ства сразу сле­ду­ет, что: .

До­ка­за­но.

Ока­зы­ва­ет­ся, что, как и в слу­чае с па­рал­ле­ло­грам­мом, у рав­но­бед­рен­ной тра­пе­ции свой­ства од­но­вре­мен­но яв­ля­ют­ся и при­зна­ка­ми. Сфор­му­ли­ру­ем и до­ка­жем эти при­зна­ки.

При­зна­ки рав­но­бед­рен­ной тра­пе­ции

1.      Дано:  – тра­пе­ция; .

До­ка­зать: 

До­ка­за­тель­ство:

До­ка­за­тель­ство дан­но­го при­зна­ка аб­со­лют­но ана­ло­гич­но до­ка­за­тель­ству со­от­вет­ству­ю­ще­го свой­ства. Про­ве­дём в тра­пе­ции  пря­мую  па­рал­лель­но сто­роне  (см. Рис. 6).

 – па­рал­ле­ло­грамм (две пары по­пар­но па­рал­лель­ных сто­рон).

 (со­от­вет­ствен­ные углы при па­рал­лель­ных пря­мых). От­ку­да, поль­зу­ясь усло­ви­ем, по­лу­ча­ем:  – рав­но­бед­рен­ный

Рис. 6

(равны углы при ос­но­ва­нии). Зна­чит:  (у па­рал­ле­ло­грам­ма про­ти­во­по­лож­ные сто­ро­ны равны).

До­ка­за­но.

2.      Дано:  – тра­пе­ция; .

До­ка­зать: .

До­ка­за­тель­ство:

Вы­пол­ним ещё одно стан­дарт­ное до­пол­ни­тель­ное по­стро­е­ние при ре­ше­нии задач с тра­пе­ци­ей: про­ве­дём через вер­ши­ну  пря­мую  па­рал­лель­но диа­го­на­ли  (см. Рис. 7).

Рис. 7

 – па­рал­ле­ло­грамм (две пары по­пар­но па­рал­лель­ных сто­рон).

 (со­от­вет­ствен­ные углы при па­рал­лель­ных пря­мых). Кроме того,  – рав­но­бед­рен­ный ( – по усло­вию;  – по свой­ству па­рал­ле­ло­грам­ма). А зна­чит: .

До­ка­за­но.

 4. Примеры задач

Рас­смот­рим несколь­ко при­ме­ров ре­ше­ния задач с тра­пе­ци­ей.

При­мер 1.

Дано:  – тра­пе­ция; .

Найти: 

Ре­ше­ние:

Сумма углов при бо­ко­вой сто­роне тра­пе­ции равна  – свой­ство внут­рен­них од­но­сто­рон­них углов при па­рал­лель­ных пря­мых. Из этого факта можно по­лу­чить два ра­вен­ства:

Ответ: .

При­мер 2.

Дано:  – тра­пе­ция; .

Найти: 

Ре­ше­ние:

Рис. 8

Про­ве­дём вы­со­ту . По­лу­ча­ем че­ты­рёх­уголь­ник , в ко­то­ром про­ти­во­по­лож­ные сто­ро­ны по­пар­но па­рал­лель­ны, а два углы равны по . Зна­чит,  – па­рал­ле­ло­грамм, а точ­нее, пря­мо­уголь­ник.

Из этого сле­ду­ет, что . От­ку­да: .

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник . В нём один из ост­рых углов, по усло­вию, равен . Зна­чит, вто­рой равен , то есть: . Вос­поль­зу­ем­ся свой­ством ка­те­та, ле­жа­ще­го про­тив угла : он в два раза мень­ше ги­по­те­ну­зы.

.

Ответ: .

На этом уроке мы рас­смот­ре­ли по­ня­тие тра­пе­ции и её свой­ства, изу­чи­ли виды тра­пе­ции, а также ре­ши­ли несколь­ко при­ме­ров ти­по­вых задач.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/trapetsiya

http://www.youtube.com/watch?v=Yqw5oZ3iFAI

http://www.youtube.com/watch?v=HtSDY4BeMeA

http://www.youtube.com/watch?v=1tY3omQhTuk

http://img3.proshkolu.ru/content/media/pic/std/1000000/983000/982960-b6b4e8f6a4e7b336.jpg

http://static.wixstatic.com/media/13679f_7ac2889143594b059462e77b25eda7c6.jpg

http://delaem-uroki.narod.ru/img/102/792/KZqhOMb.gif

Трапеция. Задача на среднюю линию трапеции.

http://cs323223.vk.me/v323223595/5e51/Gi2qlTPgLVo.jpg

http://dok.opredelim.com/pars_docs/refs/47/46420/img2.jpg

Файлы