8 класс. Геометрия. Четырехугольники. Прямоугольник, ромб и квадрат.
8 класс. Геометрия. Четырехугольники. Прямоугольник, ромб и квадрат.
Комментарии преподавателя
Прямоугольник, ромб и квадрат. Осевая и центральная симметрия
1. Симметрия точек относительно прямой
Данный урок посвящён осевой и центральной симметрии.
Определение
Две точки и называются симметричными относительно прямой , если:
1. прямая проходит через середину отрезка ;
2. прямая перпендикулярна отрезку.
На Рис. 1 изображены примеры симметричных относительно прямой точек и , и .
Рис. 1
Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.
Симметричными относительно прямой могут быть и фигуры.
Сформулируем строгое определение.
2. Осевая симметрия, примеры
Определение
Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая называется осью симметрии. Фигура при этом обладает осевой симметрией.
Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.
Пример 1
Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).
Рис. 2
(так как – общая сторона, (свойство биссектрисы), а треугольники – прямоугольные). Значит, . Поэтому точки и симметричны относительно биссектрисы угла.
Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.
Пример 2
Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).
Рис. 3
Пример 3
Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).
Рис. 4
Пример 4
Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).
Рис. 5
Пример 5
Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 4).
Рис. 6
Пример 6
У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).
Рис. 7
3. Центральная симметрия, примеры
Рассмотрим теперь понятие центральной симметрии.
Определение
Точки и называются симметричными относительно точки , если: – середина отрезка .
Рассмотрим несколько примеров: на Рис. 8 изображены точки и , а также и , которые являются симметричными относительно точки , а точки и не являются симметричными относительно этой точки.
Рис. 8
Некоторые фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.
Определение
Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка называется центром симметрии, а фигура обладает центральной симметрией.
Рассмотрим примеры фигур, обладающих центральной симметрией.
Пример 7
У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).
Рис. 9
Пример 8
У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10).
Рис. 10
4. Решение задач
Решим несколько задач на осевую и центральную симметрию.
Задача 1.
Сколько осей симметрии имеет отрезок ?
Решение:
Отрезок имеет две оси симметрии. Первая из них – это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая – серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.
Ответ: 2 оси симметрии.
Задача 2.
Сколько осей симметрии имеет прямая ?
Решение:
Прямая имеет бесконечно много осей симметрии. Одна из них – это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.
Ответ: бесконечно много осей симметрии.
Задача 3.
Сколько осей симметрии имеет луч ?
Решение:
Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).
Ответ: одна ось симметрии.
Задача 4.
Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.
Доказательство:
Рассмотрим ромб . Докажем, к примеру, что прямая является его осью симметрии. Очевидно, что точки и являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки и симметричны относительно этой прямой, так как . Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит ромбу (см. Рис. 11).
Рис. 11
Проведём через точку перпендикуляр к прямой и продлим его до пересечения с . Рассмотрим треугольники и . Эти треугольники прямоугольные (по построению), кроме того, в них: – общий катет, а (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно прямой . Это означает, что является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.
Доказано.
Задача 5.
Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.
Доказательство:
Рассмотрим параллелограмм . Докажем, что точка является его центром симметрии. Очевидно, что точки и , и являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит параллелограмму (см. Рис. 12).
Рис. 12
Соединим точку с точкой и продлим линию до пересечения с противоположной стороной. Рассмотрим треугольники и . Эти треугольники равны по второму признаку равенства треугольников (сторона и два угла). Действительно: (так как диагонали параллелограмма точкой пересечения делятся пополам), (как внутренние накрест лежащие при параллельных прямых), (как вертикальные углы). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно точки . Это означает, что является центром симметрии параллелограмма.
Доказано.
ИСТОЧНИК
http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/pryamougolnik-romb-i-kvadrat-osevaya-i-tsentralnaya-simmetrii
http://www.youtube.com/watch?v=KQVvIPgse98
https://www.youtube.com/watch?v=wdYX5BR7UGQ
http://oldskola1.narod.ru/Nikitin/0046.htm
http://festival.1september.ru/articles/416997/
http://rushkolnik.ru/tw_files2/urls_3/891/d-890061/890061_html_m5ff065f.jpg
http://www.online-tusa.com/this/img/24/2499.gif
http://panel.mriya.org.ua/upload/Golubiatnikova/_0013-013-Pravilnyj-treugolnik.jpg
http://www.online-tusa.com/this/img/25/2500.gif
http://5klass.net/datas/geometrija/Simmetrija-figur/0010-010-Tak-romb-simmetrichen-sam-sebe-otnositelno-svoikh-diagonalej.jpg
http://dok.opredelim.com/pars_docs/refs/70/69450/img8.jpg
http://gigabaza.ru/doc/16746.html
https://prezentacii.org/engine/download.php?id=19307
http://cs1-48v4.vk-cdn.net/p24/3551abddfac0c8.mp3?extra=amJxaBk9gfTT0lPmsOEwb8Rn_T2twbNJH1OUazYT-T9cSSu4_1787ibMzOu6ytv1rZKrpdEq7XnWZN1f-bjAuKyWIFf7mzw