Кинематика. Физика. 10 класс.

Кинематика. Физика. 10 класс.

Комментарии преподавателя

Неравномерное движение

Нерав­но­мер­ным на­зы­ва­ет­ся дви­же­ние, при ко­то­ром тело за рав­ные про­ме­жут­ки вре­ме­ни про­хо­дит нерав­ные пути.

 

 

Ос­нов­ная за­да­ча ме­ха­ни­ки – опре­де­лить по­ло­же­ние тела в любой мо­мент вре­ме­ни. При нерав­но­мер­ном дви­же­нии ско­рость тела ме­ня­ет­ся, сле­до­ва­тель­но, необ­хо­ди­мо на­учить­ся опи­сы­вать из­ме­не­ние ско­ро­сти тела. Для этого вво­дят­ся два по­ня­тия: сред­няя ско­рость и мгно­вен­ная ско­рость.

Средняя скорость

Факт из­ме­не­ния ско­ро­сти тела при нерав­но­мер­ном дви­же­нии не все­гда необ­хо­ди­мо учи­ты­вать, при рас­смот­ре­нии дви­же­нии тела на боль­шом участ­ке пути в целом (нам не важна ско­рость в каж­дый мо­мент вре­ме­ни) удоб­но вве­сти по­ня­тие сред­ней ско­ро­сти.

Сред­ней ско­ро­стью на­зы­ва­ют от­но­ше­ние пол­но­го пе­ре­ме­ще­ния, ко­то­рое со­вер­ши­ло тело, ко вре­ме­ни, за ко­то­рое со­вер­ше­но это пе­ре­ме­ще­ние.

 

На прак­ти­ке чаще всего ис­поль­зу­ет­ся по­ня­тие сред­ней пу­те­вой ско­ро­сти.

Сред­няя пу­те­вая ско­рость – это от­но­ше­ние пол­но­го пути, прой­ден­но­го телом, ко вре­ме­ни, за ко­то­рое путь прой­ден.

 

Су­ще­ству­ет ещё одно опре­де­ле­ние сред­ней ско­ро­сти.

Сред­няя ско­рость – это та ско­рость, с ко­то­рой долж­но дви­гать­ся тело рав­но­мер­но, чтобы прой­ти дан­ное рас­сто­я­ние за то же время, за ко­то­рое оно его про­шло, дви­га­ясь нерав­но­мер­но.

Из курса ма­те­ма­ти­ки нам из­вест­но, что такое сред­нее ариф­ме­ти­че­ское. Для чисел 10 и 36 оно будет равно:

 

Для того чтобы узнать воз­мож­ность ис­поль­зо­ва­ния этой фор­му­лы для на­хож­де­ния сред­ней ско­ро­сти, решим сле­ду­ю­щую за­да­чу.

За­да­ча

Ве­ло­си­пе­дист под­ни­ма­ет­ся со ско­ро­стью 10 км/ч на склон, за­тра­чи­вая на это 0,5 часа. Далее со ско­ро­стью 36 км/ч спус­ка­ет­ся вниз за 10 минут. Най­ди­те сред­нюю ско­рость ве­ло­си­пе­ди­ста (см. Рис. 4).

Дано:; ; ;

Найти:

Ре­ше­ние:

Рис. 4. Ил­лю­стра­ция к за­да­че

Так как еди­ни­ца из­ме­ре­ния дан­ных ско­ро­стей – км/ч, то и сред­нюю ско­рость най­дём в км/ч. Сле­до­ва­тель­но, дан­ные за­да­чи не будем пе­ре­во­дить в СИ. Пе­ре­ве­дём в часы.

 

Сред­няя ско­рость равна:

 

Пол­ный путь () со­сто­ит из пути подъ­ёма на склон () и спус­ка со скло­на ():

 

Путь подъ­ёма на склон равен:

 

Путь спус­ка со скло­на равен:

 

Время, за ко­то­рое прой­ден пол­ный путь, равно:

 

 

Ответ:

Ис­хо­дя из от­ве­та за­да­чи, видим, что при­ме­нять фор­му­лу сред­не­го ариф­ме­ти­че­ско­го для вы­чис­ле­ния сред­ней ско­ро­сти нель­зя.

Мгновенная скорость

Сред­нюю ско­рость, из­ме­рен­ную за бес­ко­неч­но малый про­ме­жу­ток вре­ме­ни, на­зы­ва­ют мгно­вен­ной ско­ро­стью тела (для при­ме­ра, спи­до­метр ав­то­мо­би­ля по­ка­зы­ва­ет мгно­вен­ную ско­рость).

Су­ще­ству­ет ещё одно опре­де­ле­ние мгно­вен­ной ско­ро­сти.

Мгно­вен­ная ско­рость – ско­рость дви­же­ния тела в дан­ный мо­мент вре­ме­ни, ско­рость тела в дан­ной точке тра­ек­то­рии.

Для того чтобы лучше по­нять дан­ное опре­де­ле­ние, рас­смот­рим при­мер.

Пусть ав­то­мо­биль дви­жет­ся пря­мо­ли­ней­но по участ­ку шоссе. У нас есть гра­фик за­ви­си­мо­сти про­ек­ции пе­ре­ме­ще­ния от вре­ме­ни для дан­но­го дви­же­ния (см. Рис. 5), про­ана­ли­зи­ру­ем дан­ный гра­фик.

На гра­фи­ке видно, что ско­рость ав­то­мо­би­ля не по­сто­ян­ная. До­пу­стим, необ­хо­ди­мо найти мгно­вен­ную ско­рость ав­то­мо­би­ля через 30 се­кунд после на­ча­ла на­блю­де­ния (в точке A). Поль­зу­ясь опре­де­ле­ни­ем мгно­вен­ной ско­ро­сти, най­дём мо­дуль сред­ней ско­ро­сти за про­ме­жу­ток вре­ме­ни от  до . Для этого рас­смот­рим фраг­мент дан­но­го гра­фи­ка (см. Рис. 6).

Рис. 5. Гра­фик за­ви­си­мо­сти про­ек­ции пе­ре­ме­ще­ния от вре­ме­ни

Рис. 6. Гра­фик за­ви­си­мо­сти про­ек­ции пе­ре­ме­ще­ния от вре­ме­ни

Рас­счи­ты­ва­ем сред­нюю ско­рость на дан­ном участ­ке вре­ме­ни:

 

Для того чтобы про­ве­рить пра­виль­ность на­хож­де­ния мгно­вен­ной ско­ро­сти, най­дём мо­дуль сред­ней ско­ро­сти за про­ме­жу­ток вре­ме­ни от  до , для этого рас­смот­рим фраг­мент гра­фи­ка (см. Рис. 7).

Рис. 7. Гра­фик за­ви­си­мо­сти про­ек­ции пе­ре­ме­ще­ния от вре­ме­ни

Рас­счи­ты­ва­ем сред­нюю ско­рость на дан­ном участ­ке вре­ме­ни:

 

По­лу­чи­ли два зна­че­ния мгно­вен­ной ско­ро­сти ав­то­мо­би­ля через 30 се­кунд после на­ча­ла на­блю­де­ния. Точ­нее будет то зна­че­ние, где ин­тер­вал вре­ме­ни мень­ше, то есть . Если умень­шать рас­смат­ри­ва­е­мый ин­тер­вал вре­ме­ни силь­нее, то мгно­вен­ная ско­рость ав­то­мо­би­ля в точке A будет опре­де­лять­ся более точно.

Мгно­вен­ная ско­рость – это век­тор­ная ве­ли­чи­на. По­это­му, кроме её на­хож­де­ния (на­хож­де­ния её мо­ду­ля), необ­хо­ди­мо знать, как она на­прав­ле­на.

 (при ) – мгно­вен­ная ско­рость

 

На­прав­ле­ние мгно­вен­ной ско­ро­сти сов­па­да­ет с на­прав­ле­ни­ем пе­ре­ме­ще­ния тела.

Если тело дви­жет­ся кри­во­ли­ней­но, то мгно­вен­ная ско­рость на­прав­ле­на по ка­са­тель­ной к точке тра­ек­то­рии (см. Рис. 8).

Рис. 8. На­прав­ле­ние мгно­вен­ной ско­ро­сти

Закон сложения перемещений и скоростей

Если мы го­во­рим, что тра­ек­то­рия, путь, пе­ре­ме­ще­ние и ско­рость яв­ля­ют­ся от­но­си­тель­ны­ми, то есть за­ви­сят от вы­бо­ра си­сте­мы от­сче­та, то про время мы этого не го­во­рим. В рам­ках клас­си­че­ской, или Нью­то­но­вой, ме­ха­ни­ки время есть ве­ли­чи­на аб­со­лют­ная, то есть про­те­ка­ю­щее во всех си­сте­мах от­сче­та оди­на­ко­во.

Рас­смот­рим, как на­хо­дить пе­ре­ме­ще­ние и ско­рость в одной си­сте­ме от­сче­та, если они нам из­вест­ны в дру­гой си­сте­ме от­сче­та.

Че­ло­век идет по па­лу­бе па­ро­хо­да со ско­ро­стью  от­но­си­тель­но па­ро­хо­да. Па­ро­ход дви­жет­ся по­сту­па­тель­но со ско­ро­стью  от­но­си­тель­но бе­ре­га. Най­дем ско­рость  че­ло­ве­ка от­но­си­тель­но бе­ре­га (Рис. 9).

Свя­жем непо­движ­ную си­сте­му от­сче­та (хОу) с Зем­лей, а по­движ­ную (х’О’у) – с па­ро­хо­дом.

 Пример задачи

Рис. 9. При­мер за­да­чи

Из Рис. 9 видно, что пе­ре­ме­ще­ние:

 Δ = Δ + Δ ⇒ Δ ≠ Δ,

где Δ – пе­ре­ме­ще­ние че­ло­ве­ка от­но­си­тель­но па­ро­хо­да, Δ – пе­ре­ме­ще­ние па­ро­хо­да от­но­си­тель­но бе­ре­га, Δ – пе­ре­ме­ще­ние че­ло­ве­ка от­но­си­тель­но бе­ре­га.

Таким об­ра­зом, если тело од­но­вре­мен­но участ­ву­ет в несколь­ких дви­же­ни­ях, то ре­зуль­ти­ру­ю­щее пе­ре­ме­ще­ние точки равно век­тор­ной сумме пе­ре­ме­ще­ний, со­вер­ша­е­мых ею в каж­дом из дви­же­ний. В этом со­сто­ит уста­нов­лен­ный экс­пе­ри­мен­таль­но прин­цип неза­ви­си­мо­сти дви­же­ний.

Раз­де­лив это урав­не­ние на про­ме­жу­ток вре­ме­ни, за ко­то­рый про­изо­шли пе­ре­ме­ще­ния че­ло­ве­ка и па­ро­хо­да, по­лу­чим закон сло­же­ния ско­ро­стей:

  = +

Ско­рость  тела от­но­си­тель­но непо­движ­ной си­сте­мы от­сче­та равна гео­мет­ри­че­ской сумме ско­ро­сти  тела от­но­си­тель­но по­движ­ной си­сте­мы от­сче­та и ско­ро­сти  самой по­движ­ной си­сте­мы от­сче­та от­но­си­тель­но непо­движ­ной.

До­маш­нее за­да­ние

  1. Можно ли, зная сред­нюю ско­рость за опре­де­лен­ный про­ме­жу­ток вре­ме­ни, найти пе­ре­ме­ще­ние, со­вер­шен­ное телом за любую часть этого про­ме­жут­ка?
  2. Чем от­ли­ча­ет­ся мгно­вен­ная ско­рость при рав­но­мер­ном пря­мо­ли­ней­ном дви­же­нии от мгно­вен­ной ско­ро­сти при нерав­но­мер­ном дви­же­нии?
  3. Во время езды на ав­то­мо­би­ле через каж­дую ми­ну­ту сни­ма­лись по­ка­за­ния спи­до­мет­ра. Можно ли по этим дан­ным опре­де­лить сред­нюю ско­рость дви­же­ния ав­то­мо­би­ля?
  4. Первую треть трас­сы ве­ло­си­пе­дист ехал со ско­ро­стью 12 км в час, вто­рую треть – со ско­ро­стью 16 км в час, а по­след­нюю треть — со ско­ро­стью 24 км в час. Най­ди­те сред­нюю ско­рость ве­ло­си­пе­да на про­тя­же­нии всего пути. Ответ дайте в км в час.

К занятию прикреплен файл  «Ребусы по теме». Вы можете скачать файл  в любое удобное для вас время.

Использованные источники: 

  • http://interneturok.ru/ru/school/physics/10-klass/
  • http://www.youtube.com/watch?v=fLEtoof1l2c
  • http://www.youtube.com/watch?v=pWStlFLGaqk
     

Файлы