10 класс. Алгебра. Производная. Применение производной к исследованию функции.
10 класс. Алгебра. Производная. Применение производной к исследованию функции.
Комментарии преподавателя
Уравнение касательной к графику функции
1. Уравнение касательной к графику функции
На предыдущих занятиях были рассмотрены задачи на технику дифференцирования. Это очень важные задачи, и нахождение производных необходимо в разных задачах, в том числе и в составлении уравнения касательной.
Построим кривую (см. рис.1).
Рис. 1. График функции .
Зафиксируем точку . Если , то значение функции равно . Значит, имеем точку с координатами (.
Задача: составить уравнение касательной. Более строгая формулировка – написать уравнение касательной к функции в точке с абсциссой , в которой - существует.
Уравнение касательной – это прямая, которая задается формулой
Любая прямая, в том числе и касательная, определяется двумя числами: и . Исходя из геометрического смысла производной (тангенс угла наклона касательной) – это есть угловой коэффициент .
Параметр найдем из условия, что касательная проходит через точку (, то есть .
.
Стало быть .
Запишем уравнение касательной
.
Или, .
Получили уравнение касательной к кривой в точке с абсциссой .
2. Смысл элементов уравнения касательной
Смысл каждого элемента, который входит в уравнение касательной.
1) ( – точка касания касательной и графика функции.
2) - угловой коэффициент касательной к графику функции.
3) – произвольная точка на касательной.
Очень много задач, когда задана точка, которая не лежит на графике функции, и через нее надо провести касательную к данной функции. Надо четко понимать, что – это произвольная точка на касательной.
Итак, получили уравнение касательной, проанализировали смысл каждого элемента этой касательной, и теперь приведем пример, и на нем изложим методику построения касательной.
3. Алгоритм составления уравнения касательной к графику функции
Задача.
К кривой в точке с абсциссой провести касательную. Проиллюстрируем поиск касательной на рисунке (см. рис.2).
Рис. 2. Касательная к графику функции .
Зафиксируем точку . Значение функции в этой точке равно 1.
Алгоритм составления уравнения касательной к графику функции:
1) Найти и точку касания.
- дано.Точка касания: (;.
2) Найти производную в любой точке .
.
3) Найти значение производной в точке с абсциссой .
.
4) Выписать и проанализировать уравнение касательной.
.
Упрощаем и получаем: .
Ответ: .
4. Сопутствующие задачи
Задача 1.
Пусть дано уравнение касательной .
Найдите точки пересечения касательной с осями координат.
Если , то . – это первая точка.
Если , то . - вторая точка.
Итак, первая точка – это точка с координатами . Вторая точка – точка пересечения с осью , точка с координатами (см. рис.3).
Рис.3. Точки пересечения касательной к графику функции с осями координат. Задача 2.
Найти длину отрезка касательной, которая отсекается осями координат, то есть надо найти длину отрезка .
Рассмотрим прямоугольный треугольник (Рис. 3). Длина катета равна 1. Длина катета . Длину отрезка из прямоугольного треугольника найдем по теореме Пифагора:
Задача 3.
Найти площадь треугольника, образованного касательной и осями координат. Ясно, что это площадь треугольника (Рис. 3) - площадь треугольника, образованного касательной и осями координат.
Следующая задача для самостоятельного решения.
Найдите радиус окружности, вписанной в треугольник . Радиус окружности, описанной около треугольника .
5. Касательная к графику тригонометрической функции
Рассмотрим пример.
Дана функция . Написать уравнение касательной к данной кривой в точке с данной абсциссой.
Рассмотрим графическую иллюстрацию (см. рис.4).
Рис. 4. Касательная к графику функции .
Нахождение точки касания.
1. Точка касания имеет координаты .
2. Найти .
3. Найти
И, последнее действие, – написать уравнение касательной.
4. .
Упростим и получим .
Заметим в точке синусоида и касательная соприкасаются. В районе точки синусоида и прямая почти не различаются.
6. Итог урока
Итак, мы вывели уравнение касательной. Рассмотрели все элементы этой касательной. Выяснили их смысл. Сформулировали одну из методик нахождения касательных в конкретных функциях, в конкретных точках и решили некоторые сопутствующие задачи.
ИСТОЧНИК
http://interneturok.ru/ru/school/algebra/10-klass/proizvodnaya/uravnenie-kasatelnoy-k-grafiku-funktsii
http://www.youtube.com/watch?v=3M16hzw6s3c
http://www.youtube.com/watch?v=x8O5GGKgAoc
http://v.5klass.net/zip/457286d0df8865f8084b5db13cbd6e95.zip
http://school.xvatit.com/index.php?title=%D3%F0%E0%E2%ED%E5%ED%E8%E5_%EA%E0%F1%E0%F2%E5%EB%FC%ED%EE%E9_%EA_%E3%F0%E0%F4%E8%EA%F3_%F4%F3%ED%EA%F6%E8%E8
http://itest.kz/lekciya_uglovoj_koehfficzient_kasatelnoj_i_ee_uravnenie_ru
http://www.postupivuz.ru/vopros/12822.htm