Принцип действия и КПД тепловых двигателей. Физика. 10 класс.
Принцип действия и КПД тепловых двигателей. Физика. 10 класс.
Комментарии преподавателя
Принцип действия теплового двигателя
1. Тепловые двигатели
Темой прошлого урока был первый закон термодинамики, который задавал связь между некоторым количеством теплоты, которое было передано порции газа, и работой, совершаемой этим газом при расширении. И теперь пришло время сказать, что эта формула вызывает интерес не только при неких теоретических расчётах, но и во вполне практическом применении, ведь работа газа есть не что иное как полезная работа, какую мы извлекаем при использовании тепловых двигателей.
Определение. Тепловой двигатель – устройство, в котором внутренняя энергия топлива преобразуется в механическую работу (рис. 1).
Рис. 1. Различные примеры тепловых двигателей (Источник), (Источник)
Как видно из рисунка, тепловыми двигателями являются любые устройства, работающие по вышеуказанному принципу, и они варьируются от невероятно простых до очень сложных по конструкции.
Все без исключения тепловые двигатели функционально делятся на три составляющие (см. рис. 2):
- Нагреватель
- Рабочее тело
- Холодильник
Рис. 2. Функциональная схема теплового двигателя (Источник)
2. Работа газа в тепловых двигателях
Нагревателем является процесс сгорания топлива, которое при сгорании передаёт большое количество теплоты газу, нагревая тот до больших температур. Горячий газ, который является рабочим телом, вследствие повышения температуры, а следовательно, и давления, расширяется, совершая работу . Конечно же, так как всегда существует теплопередача с корпусом двигателя, окружающим воздухом и т. д., работа не будет численно равняться переданной теплоте – часть энергии уходит на холодильник, которым, как правило, является окружающая среда.
Проще всего можно представить себе процесс, происходящий в простом цилиндре под подвижным поршнем (например, цилиндр двигателя внутреннего сгорания). Естественно, чтобы двигатель работал и в нём был смысл, процесс должен происходить циклически, а не разово. То есть после каждого расширения газ должен возвращаться в первоначальное положение (рис. 3).
Рис. 3. Пример циклической работы теплового двигателя (Источник)
Для того чтобы газ возвращался в начальное положение, над ним необходимо выполнить некую работу (работа внешних сил). А так как работа газа равна работе над газом с противоположным знаком, для того чтобы за весь цикл газ выполнил суммарно положительную работу (иначе в двигателе не было бы смысла), необходимо, чтобы работа внешних сил была меньше работы газа. То есть график циклического процесса в координатах P-V должен иметь вид: замкнутый контур с обходом по часовой стрелке. При данном условии работа газа (на том участке графика, где объём растёт) больше работы над газом (на том участке, где объём уменьшается) (рис. 4).
Рис. 4. Пример графика процесса, протекающего в тепловом двигателе
Раз мы говорим о некоем механизме, обязательно нужно сказать, каков его КПД.
Паровая турбина
В современной технике широко применяют другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.
Ротор паровой турбины
Схема устройства простейшей паровой турбины приведена на рисунке 28. На вал 5 насажен диск 4, по ободу которого закреплены лопатки 2. Около лопаток расположены трубы — сопла 1, в которые поступает пар 3 из котла. Струи пара, вырывающиеся из сопел, оказывают значительное давление на лопатки и приводят диск турбины в быстрое вращательное движение.
Схема паровой турбины
В современных турбинах применяют не один, а несколько дисков, насаженных на общий вал. Пар последовательно проходит через лопатки всех дисков, отдавая каждому из них часть своей энергии.
На электростанциях с турбиной соединён генератор электрического тока. Частота вращения вала турбин достигает 3000 оборотов в минуту, что является очень удобным для приведения в движение генераторов электрического тока.
В нашей стране строят паровые турбины мощностью от нескольких киловатт до 1 200 000 кВт.
Применяют турбины на тепловых электростанциях и на кораблях.
Постепенно находят всё более широкое применение газовые турбины, в которых вместо пара используются продукты сгорания газа.
КПД теплового двигателя
Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.
Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты. Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.
Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.
Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.
Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.
Коэффициент полезного действия обозначают η (греч. буква «эта»).
КПД теплового двигателя определяют по формуле
где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 - Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.
Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .
КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.
Домашняя работа
Задание 1. Ответить на вопросы.
- Какие тепловые двигатели называют паровыми турбинами?
- В чём отличие в устройстве турбин и поршневых машин?
- Из каких частей состоит паровая турбина и как она работает?
- Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
- Что называют КПД теплового двигателя?
- Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?
Задание 2. Решить задачи.
☝ При равномерном перемещении груза массой 30 кг по наклонной плоскости была приложена сила 80 Н. Вычисли КПД плоскости, если ее длина 3,6 м, а высота – 60 см.
☝ Какова длина наклонной плоскости, если при перемещении груза массой 1 кг была приложена сила 5 Н? Высота наклонной плоскости 0,2 м, а КПД 80%.
☝ Груз массой 300 кг подняли с помощью рычага на высоту 0,5 м. При этом к длинному плечу рычага была приложена сила 500 Н, а точка приложения силы опустилась на 4 м. Вычислите КПД рычага.
☝ Какая сила была приложена к длинному плечу рычага с КПД 40%, если груз массой 100 кг был поднят на высоту 10 см, а длинное плечо рычага опустилось на 50 см?
ИНТЕРЕСНО
1. Мощные механизмы приводят в движение не паровыми поршневыми машинами, а паровыми турбинами. Ведь поршневые машины при той же мощности имеют большие размеры и вес и меньший кпд. В ряде случаев это технически неудобно и экономически невыгодно.
2. Чтобы поднять КПД парового двигателя стенки парового котла лучше делать из железа или меди.
Эти металлы улучшат теплопроводность котла и этим поднимут его КПД. Кстати, слой накипи ухудшает теплопроводность котла и приводит к появлению на нем трещин и, в конце концов, к порче котла, поэтому-то так необходимо очищать котел от накипи.
К занятию прикреплен файл «Изобретение и распространение паровых турбин.». Вы можете скачать файл в любое удобное для вас время.
Использованные источники:
- http://interneturok.ru/ru/school/physics/10-klass/
- http://www.youtube.com/watch?v=AMFRpRQnMRM
- http://www.youtube.com/watch?v=iDDGCf9eyes
- http://www.youtube.com/watch?v=Ny2YDArHerY
- http://www.youtube.com/watch?v=G3RtYsmE_Jw