7 класс. Алгебра. Степень с натуральным показателем и ее свойства.
7 класс. Алгебра. Степень с натуральным показателем и ее свойства.
Комментарии преподавателя
На этом уроке мы изучим умножение степеней с одинаковыми основаниями. Вначале вспомним определение степени и сформулируем теорему о справедливости равенства . Затем приведем примеры ее применения на конкретных числах и докажем ее. Также мы применим теорему для решения различных задач.
Тема: Степень с натуральным показателем и ее свойства
Урок: Умножение степеней с одинаковыми основаниями (формула )
1. Основные определения
Основные определения:
Здесь a - основание степени,
n - показатель степени,
- n-ая степень числа.
2. Формулировка теоремы 1
Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:
По-иному: если а – любое число; n и k натуральные числа, то:
Отсюда правило 1:
При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.
3. Разъясняющие задачи
Разъясняющие примеры:
1)
2)
Вывод: частные случаи подтвердили правильность теоремы №1. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k.
4. Доказательство теоремы 1
Дано число а – любое; числа n и k – натуральные. Доказать:
Доказательство основано на определении степени.
То есть
5. Решение примеров с помощью теоремы 1
Пример 1: Представьте в виде степени.
Для решения следующих примеров воспользуемся теоремой 1.
а)
б)
в)
г)
д)
е)
ж)
6. Обобщение теоремы 1
Здесь использовано обобщение:
7. Решение примеров с помощью обобщения теоремы 1
з)
и)
к)
л)
м)
8. Решение различных задач с помощью теоремы 1
Пример 2: Вычислите (можно использовать таблицу основных степеней).
а) (по таблице)
б)
Пример 3: Запишите в виде степени с основанием 2.
а)
б)
в)
г)
Пример 4: Определите знак числа:
, а – отрицательное, так как показатель степени при -13 нечетный.
По-иному:
Пример 5: Замените (·) степенью числа с основанием r:
Имеем , то есть .
На этом уроке мы изучим деление степеней с одинаковыми основаниями. Вначале вспомним определение степени и теорему об умножении степеней с одинаковыми основаниями. Далее мы сформулируем теорему о делении степеней с одинаковыми основаниями, решим разъясняющие задачи и докажем теорему в общем случае. Затем мы применим теорему для решения различных задач, а также решим типичные задачи с использованием обеих теорем.
Тема: Степень с натуральным показателем и ее свойства
Урок: Деление степеней с одинаковыми основаниями (формула )
1. Напоминание основных определений и теоремы 1
Основные определения:
Здесь a - основание степени,
n - показатель степени,
- n-ая степень числа.
Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:
При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.
Теорема 2. Для любого числа а и любых натуральных n и k, таких, что n > k справедливо равенство:
При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.
2. Разъясняющие задачи
Разъясняющие задачи
1)
2)
Вывод: частные случаи подтвердили правильность теоремы №2. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k таких, что n > k.
3. Доказательство теоремы 2 двумя способами
Доказательство теоремы 2.
Первый способ.
Воспользуемся теоремой 1. Применим ее для степеней и .
. Разделим обе части на .
Второй способ.
Доказательство основано на определении степени
Сократим k сомножителей.
То есть для любого а и любых натуральных n и k таких, что n > k.
4. Решение примеров на вычисление и упрощение с помощью теоремы 2
Пример 1: Вычислить.
Для решения следующих примеров воспользуемся теоремой 2.
а)
б)
Пример 2: Упростить.
а)
б)
в)
Пример 3: Решить уравнение.
а)
б)
5. Решение примеров на вычисление на совместное применение теорем 1 и 2
Пример 4: Вычислить:
Для решения следующих примеров будем пользоваться обеими теоремами.
а) =6 или быстрее =6
б) ==81 или быстрее =81
в) == или быстрее
6. Решение примеров на упрощение на совместное применение теорем 1 и 2
Пример 5: Упростить:
а) = или быстрее
б)
в) или быстрее
Источники конспекта: http://interneturok.ru/ru/school/algebra/7-klass/stepen-s-naturalnym-pokazatelem-i-eyo-svojstva/umnozhenie-stepeney-s-odinakovymi-osnovaniyami-formula-a-sup-n-sup-8727a-sup-k-sup-a-sup-n-k-sup?konspekt&chapter_id=2
http://interneturok.ru/ru/school/algebra/7-klass/stepen-s-naturalnym-pokazatelem-i-eyo-svojstva/delenie-stepeney-s-odinakovymi-osnovaniyami?konspekt&chapter_id=2
Источник видео: http://www.youtube.com/watch?v=IQPWIC6GXuI