11 класс. Физика. Фаза колебаний.
11 класс. Физика. Фаза колебаний.
Комментарии преподавателя
Фа́за колеба́ний — физическая величина, используемая по преимуществу для описания гармонических или близких к гармоническим[1][2] колебаний, меняющаяся со временем (чаще всего равномерно растущая со временем), при заданнойамплитуде (для затухающих колебаний - при заданной начальной амплитуде и коэффициенте затухания) определяющая состояние колебательной системы в (любой) данный момент времени.[3] Равно применяется для описания волн, главным образом - монохроматических или близких к монохроматичности.
В большинстве случаев о фазе говорят применительно к гармоническим (синусоидальным или описывающимся мнимой экспонентой) колебаниям (или монохроматическим волнам, также синусоидальным или описывающимся мнимой экспонентой).
Для таких колебаний:
,
,
,
или волн,
например волн, распространяющихся в одномерном пространстве:
,
,
,
или волн, распространяющихся в трехмерном пространстве (или пространстве любой размерности):
,
,
,
фаза колебаний определяется как аргумент этой функции (одной из перечисленных, в каждом случае из контекста ясно, какой именно), описывающей гармонический колебательный процесс или монохроматическую волну.
- Поскольку синус и косинус совпадают друг с другом при сдвиге аргумента (то есть фазы) на во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса.[4][5]
То есть, для колебания фаза
,
для волны в одномерном пространстве
,
для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (чем величина выше, тем быстрее растет фаза с течением времени), t— время, — фаза при t=0 - начальная фаза; k - волновое число, x - координата, k - волновой вектор, x - набор (декартовых) координат, характеризующих точку пространства (радиус-вектор).
Фаза выражается в угловых единицах (радианах, градусах) или в циклах (долях периода):
1 цикл = 2π радиан = 360 градусов.
Иногда (в квазиклассическом приближении, где используются волны, близкие к монохроматическим, но не строго монохроматические, а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматизма, хотя всё же подобны монохроматическим) фаза рассматривается как зависящая от времени и пространственных координат не как линейная функция, а как в принципе произвольная[6] функция координат и времени:
Содержание |
Связанные термины
Если две волны (два колебания) полностью совпадают друг с другом, говорят, что волны находятся в фазе. В случае, если моменты максимума одного колебания совпадают с моментами минимума другого колебания (или максимумы одной волны совпадают с минимумами другой), говорят, что колебания (волны) находятся в противофазе. При этом, если волны одинаковы (по амплитуде), в результате сложения происходит их взаимное уничтожение (точно, полностью - лишь при условии монохроматичности или хотя бы симметричности волн, в предположении линейности среды распространения итд).
Действие
Одна из наиболее фунламентальных физических величин, на которой построено современное описание практически любой достаточно фундаментальной физической системы[7] - действие - по своему смыслу является фазой.
См. также
Примечания
- ↑ В специальном случае формализма интеграла по траекториям близость колебания к гармоническому (или волны к монохроматической) имеет довольно необычный смысл.
- ↑ Иногда понятие фазы может оказаться небесполезным и для описания достаточно произвольных (далеких от гармонических) колебаний или волн, или даже непериодических процессов, однако это применение достаточно редко, и польза его в этом случае обычно достаточно ограниченна.
- Фаза колебаний в словаре по естественным наукам. Проверено 29 апреля 2010.
- ↑ Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
- ↑ Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида считается равной (синус отстает от косинуса по фазе).
- ↑ Хотя в части случаев с некоторыми условиями, несколько ограничивающими произвольность функции.
- ↑ Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (т.е. описываемые неточно, и мыслится, что будучи описана более точно такая система может быть - в принципе - описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.
ИСТОЧНИКИ
http://glnews.ru/sta43huzeo
https://www.youtube.com/watch?v=mBiFOfR9ktU
Файлы
Нет дополнительных материалов для этого занятия.