8 класс. Алгебра. Алгебраические дроби.

8 класс. Алгебра. Алгебраические дроби.

Комментарии преподавателя

Урок: Пре­об­ра­зо­ва­ние ра­ци­о­наль­ных вы­ра­же­ний

 1. Рациональное выражение и методика его упрощения

Вспом­ним сна­ча­ла опре­де­ле­ние ра­ци­о­наль­но­го вы­ра­же­ния.

Опре­де­ле­ние. Ра­ци­о­наль­ное вы­ра­же­ние – ал­геб­ра­и­че­ское вы­ра­же­ние, не со­дер­жа­щее кор­ней и вклю­ча­ю­щее толь­ко дей­ствия сло­же­ния, вы­чи­та­ния, умно­же­ния и де­ле­ния (воз­ве­де­ния в сте­пень).

Под по­ня­ти­ем «пре­об­ра­зо­вать ра­ци­о­наль­ное вы­ра­же­ние» мы имеем в виду, пре­жде всего, его упро­ще­ние. А это осу­ществ­ля­ет­ся в из­вест­ном нам по­ряд­ке дей­ствий: сна­ча­ла дей­ствия в скоб­ках, затем про­из­ве­де­ние чисел (воз­ве­де­ние в сте­пень), де­ле­ние чисел, а затем дей­ствия сло­же­ния/вы­чи­та­ния.

 2. Упрощение рациональных выражений с суммой/разностью дробей

Ос­нов­ной целью се­го­дняш­не­го урока будет при­об­ре­те­ние опыта при ре­ше­нии более слож­ных задач на упро­ще­ние ра­ци­о­наль­ных вы­ра­же­ний.

При­мер 1. Упро­стить ра­ци­о­наль­ное вы­ра­же­ние .

Ре­ше­ние. Сна­ча­ла может по­ка­зать­ся, что ука­зан­ные дроби можно со­кра­тить, т. к. вы­ра­же­ния в чис­ли­те­лях дро­бей очень по­хо­жи на фор­му­лы пол­ных квад­ра­тов со­от­вет­ству­ю­щих им зна­ме­на­те­лей. В дан­ном слу­чае важно не спе­шить, а от­дель­но про­ве­рить, так ли это.

Про­ве­рим чис­ли­тель пер­вой дроби: . Те­перь чис­ли­тель вто­рой: .

Как видно, наши ожи­да­ния не оправ­да­лись, и вы­ра­же­ния в чис­ли­те­лях не яв­ля­ют­ся пол­ны­ми квад­ра­та­ми, т. к. у них от­сут­ству­ет удво­е­ние про­из­ве­де­ния. Такие вы­ра­же­ния, если вспом­нить курс 7 клас­са, на­зы­ва­ют непол­ны­ми квад­ра­та­ми. Сле­ду­ет быть очень вни­ма­тель­ны­ми в таких слу­ча­ях, т. к. пе­ре­пу­ты­ва­ние фор­му­лы пол­но­го квад­ра­та с непол­ным – очень частая ошиб­ка, а по­доб­ные при­ме­ры про­ве­ря­ют вни­ма­тель­ность уча­ще­го­ся.

По­сколь­ку со­кра­ще­ние невоз­мож­но, то вы­пол­ним сло­же­ние дро­бей. У зна­ме­на­те­лей нет общих мно­жи­те­лей, по­это­му они про­сто пе­ре­мно­жа­ют­ся для по­лу­че­ния наи­мень­ше­го об­ще­го зна­ме­на­те­ля, а до­пол­ни­тель­ным мно­жи­те­лем для каж­дой из дро­бей яв­ля­ет­ся зна­ме­на­тель дру­гой дроби.

 

Ко­неч­но же, далее можно рас­крыть скоб­ки и при­ве­сти затем по­доб­ные сла­га­е­мые, од­на­ко, в дан­ном слу­чае можно обой­тись мень­ши­ми за­тра­та­ми сил и за­ме­тить, что в чис­ли­те­ле пер­вое сла­га­е­мое яв­ля­ет­ся фор­му­лой суммы кубов, а вто­рое – раз­но­сти кубов. Для удоб­ства вспом­ним эти фор­му­лы в общем виде:

 и .

В нашем же слу­чае вы­ра­же­ния в чис­ли­те­ле сво­ра­чи­ва­ют­ся сле­ду­ю­щим об­ра­зом:

вто­рое вы­ра­же­ние ана­ло­гич­но. Имеем:

.

Ответ. .

При­мер 2. Упро­стить ра­ци­о­наль­ное вы­ра­же­ние .

Ре­ше­ние. Дан­ный при­мер похож на преды­ду­щий, но здесь сразу видно, что в чис­ли­те­лях дро­бей на­хо­дят­ся непол­ные квад­ра­ты, по­это­му со­кра­ще­ние на на­чаль­ном этапе ре­ше­ния невоз­мож­но. Ана­ло­гич­но преды­ду­ще­му при­ме­ру скла­ды­ва­ем дроби:

, здесь мы ана­ло­гич­но спо­со­бу, ука­зан­но­му выше, за­ме­ти­ли и свер­ну­ли вы­ра­же­ния по фор­му­лам суммы и раз­но­сти кубов.

Ответ. .

При­мер 3. Упро­стить ра­ци­о­наль­ное вы­ра­же­ние .

Ре­ше­ние. Можно за­ме­тить, что зна­ме­на­тель вто­рой дроби рас­кла­ды­ва­ет­ся на мно­жи­те­ли по фор­му­ле суммы кубов. Как мы уже знаем, раз­ло­же­ние зна­ме­на­те­лей на мно­жи­те­ли яв­ля­ет­ся по­лез­ным для даль­ней­ше­го по­ис­ка наи­мень­ше­го об­ще­го зна­ме­на­те­ля дро­бей.

.

Ука­жем наи­мень­ший общий зна­ме­на­тель дро­бей, он равен: , т. к. де­лит­ся на зна­ме­на­тель тре­тьей дроби, а пер­вое вы­ра­же­ние во­об­ще яв­ля­ет­ся целым, и для него по­дой­дет любой зна­ме­на­тель. Ука­зав оче­вид­ные до­пол­ни­тель­ные мно­жи­те­ли, за­пи­шем:

.

Ответ.

 3. Упрощение рациональных выражений со сложными «многоэтажными» дробями

Рас­смот­рим более слож­ный при­мер с «мно­го­этаж­ны­ми» дро­бя­ми.

При­мер 4. До­ка­зать тож­де­ство  при всех до­пу­сти­мых зна­че­ни­ях пе­ре­мен­ной.

До­ка­за­тель­ство. Для до­ка­за­тель­ства ука­зан­но­го тож­де­ства по­ста­ра­ем­ся упро­стить его левую часть (слож­ную) до того про­сто­го вида, ко­то­рый от нас тре­бу­ет­ся. Для этого вы­пол­ним все дей­ствия с дро­бя­ми в чис­ли­те­ле и зна­ме­на­те­ле, а затем раз­де­лим дроби и упро­стим ре­зуль­тат.

. До­ка­за­но при всех до­пу­сти­мых зна­че­ни­ях пе­ре­мен­ной.

До­ка­за­но.

Источник конспекта: http://interneturok.ru/ru/school/algebra/8-klass/algebraicheskie-drobi-arifmeticheskie-operacii-nad-algebraicheskimi-drobyami/preobrazovanie-ratsionalnyh-vyrazheniy?konspekt&chapter_id=13

 

Источник видео: http://www.youtube.com/watch?v=Mtxotj-mhiQ

Файлы