9 класс. Алгебра. Системы уравнений.
9 класс. Алгебра. Системы уравнений.
Комментарии преподавателя
На этом уроке мы продолжим изучение метод решения систем уравнений, а именно: метода алгебраического сложения. Вначале рассмотрим применение этого метода на примере линейных уравнений и его суть. Также вспомним, как уравнивать коэффициенты в уравнениях. И решим ряд задач на применение этого метода.
Тема: Системы уравнений
Урок: Метод алгебраического сложения
1. Метод алгебраического сложения на примере линейных систем
Рассмотрим метод алгебраического сложения на примере линейных систем.
Пример 1. Решить систему
Решение:
Если мы сложим эти два уравнения, то y взаимно уничтожатся, и останется уравнение относительно x.
Если же вычтем из первого уравнения второе, взаимно уничтожатся x, и мы получим уравнение относительно y. В этом и заключается смысл метода алгебраического сложения.
Ответ:
Мы решили систему и вспомнили метод алгебраического сложения. Повторим его суть: мы можем складывать и вычитать уравнения, но при этом необходимо обеспечить, чтобы получилось уравнение только с одним неизвестным.
2. Метод алгебраического сложения с предварительным уравниванием коэффициентов
Пример 2. Решить систему
Решение:
Член присутствует в обоих уравнениях, поэтому удобен метод алгебраического сложения. Вычтем из первого уравнения второе.
Ответ: (2; -1).
Таким образом, проанализировав систему уравнений, можно увидеть, что она удобна для метода алгебраического сложения, и применить его.
Рассмотрим еще одну линейную систему.
3. Решение нелинейных систем
Пример 3. Решить систему
Решение:
Мы хотим избавиться от y, но в двух уравнениях коэффициенты при y разные. Уравняем их, для этого умножим первое уравнение на 3, второе – на 4.
Ответ:
Пример 4. Решить систему
Решение:
Уравняем коэффициенты при x
Можно сделать иначе – уравнять коэффициенты при y.
Ответ:
Мы решили систему, дважды применив метод алгебраического сложения.
Метод алгебраического сложения применим и при решении нелинейных систем.
Пример 5. Решить систему
Решение:
Сложим эти уравнения, и мы избавимся от y.
Эту же систему можно решить, дважды применив метод алгебраического сложения. Сложим и вычтем из одного уравнения другое.
Ответ:
Пример 6. Решить систему
Решение:
Ответ:
Пример 7. Решить систему
Решение:
Методом алгебраического сложения избавимся от члена xy. Умножим первое уравнение на .
Первое уравнение остается без изменений, вместо второго записываем алгебраическую сумму.
Далее применяем метод подстановки.
Ответ:
Пример 8. Решить систему
Решение:
Умножим второе уравнение на 2, чтобы выделить полный квадрат.
Наша задача свелась к решению четырех простейших систем.
Ответ:
Источник видео: http://interneturok.ru/ru/school/algebra/9-klass/sistemy-uravneniy/metod-algebraicheskogo-slozheniya-2?konspekt&chapter_id=26
Источник видео: http://www.youtube.com/watch?v=JMxiXlG_FzM
Файлы
Нет дополнительных материалов для этого занятия.