9 класс. Алгебра. Свойства функций.

9 класс. Алгебра. Свойства функций.

Комментарии преподавателя

Важными характеристиками конкретных функций являются область определения и область значения. На уроке будут рассматриваться задачи на нахождение области определения, области значения функции, сопутствующие задачи, включая задачи с параметрами.

 

 Свойства графически заданной функции

Рас­смот­рим функ­цию  и «про­чтем» её гра­фик (см. рис. 1).

Рис. 1. Гра­фик функ­ции 

1.  – про­ек­ция на ось ;

2.  – про­ек­ция на ось ;

3.  – корни (нули функ­ции);

4. ;

5. .

В целом функ­ция не мо­но­тон­на. Рас­смот­рим про­ме­жут­ки мо­но­тон­но­сти.

6. воз­рас­та­ет при , то есть боль­ше­му зна­че­нию ар­гу­мен­та со­от­вет­ству­ет боль­шее зна­че­ние функ­ции (мо­но­тон­ность «в горку»);

7. убы­ва­ет при , то есть боль­ше­му зна­че­нию ар­гу­мен­та со­от­вет­ству­ет мень­шее зна­че­ние функ­ции (мо­но­тон­ность «под горку»).

 Возрастающая функция

Рис. 2. Гра­фик воз­рас­та­ю­щей функ­ции

Опре­де­ле­ние. Функ­цию  на­зы­ва­ют воз­рас­та­ю­щей на мно­же­стве , если для любых  и  из мно­же­ства , таких, что , вы­пол­ня­ет­ся нера­вен­ство .

Разъ­яс­не­ние: боль­ше­му зна­че­нию ар­гу­мен­та со­от­вет­ству­ет боль­шее зна­че­ние функ­ции (см. рис. 2).

 Убывающая функция

Опре­де­ле­ние. Функ­цию на­зы­ва­ют убы­ва­ю­щей на мно­же­стве , если для любых   мно­же­ства, таких, что , вы­пол­ня­ет­ся нера­вен­ство.

Разъ­яс­не­ние: боль­ше­му зна­че­нию ар­гу­мен­та со­от­вет­ству­ет мень­шее зна­че­ние функ­ции (см. рис. 3).

Рис. 3. Гра­фик убы­ва­ю­щей функ­ции

 Ограниченная снизу функция

Рис. 4. Гра­фик огра­ни­чен­ной снизу функ­ции

Опре­де­ле­ние. Функ­цию на­зы­ва­ют огра­ни­чен­ной снизу на мно­же­стве , если все зна­че­ния функ­ции на мно­же­стве боль­ше неко­то­ро­го числа (иными сло­ва­ми, если су­ще­ству­ет число  такое, что для лю­бо­го зна­че­ния  вы­пол­ня­ет­ся нера­вен­ство ) (см. рис. 4).

 Ограниченная сверху функция

Опре­де­ле­ние. Функ­цию на­зы­ва­ют огра­ни­чен­ной свер­ху на мно­же­стве, если все зна­че­ния функ­ции мень­ше неко­то­ро­го числа (иными сло­ва­ми, если су­ще­ству­ет число  такое, что для лю­бо­го зна­че­ния  вы­пол­ня­ет­ся нера­вен­ство  ) (см. рис. 5).

Рис. 5. Гра­фик огра­ни­чен­ной свер­ху

 Наименьшее значение функции

Рис. 6. Гра­фик и наи­мень­шее зна­че­ние функ­ции

Опре­де­ле­ние. Число  на­зы­ва­ют наи­мень­шим зна­че­ни­ем функ­ции  на мно­же­стве , если:

1. В су­ще­ству­ет такая точка , что .

2. Для всех вы­пол­ня­ет­ся нера­вен­ство .

Ясно, что, если у функ­ции су­ще­ству­ет  , то она огра­ни­че­на снизу (см. рис. 6).

 

 Наибольшее значение функции

Опре­де­ле­ние. Число  на­зы­ва­ют наи­боль­шим зна­че­ни­ем функ­ции  на мно­же­стве , если:

1) в су­ще­ству­ет такая точка , что ;

2) для всех вы­пол­ня­ет­ся нера­вен­ство .

Ясно, что, если у функ­ции су­ще­ству­ет , то она огра­ни­че­на свер­ху (см. рис.7).

Рис. 7. Гра­фик и наи­боль­шее зна­че­ние функ­ции

 Понятие выпуклой функции

Функ­ция вы­пук­ла вниз на мно­же­стве  (кри­вая под от­рез­ком) (см. рис.8).

Рис. 8. Гра­фик вы­пук­лой вниз функ­ции

Рис. 9. Гра­фик вы­пук­лой вверх функ­ции

Функ­ция вы­пук­ла вверх на мно­же­стве (кри­вая над от­рез­ком) (см.рис. 9).

 Понятие непрерывной функции

Рис. 10. Гра­фик непре­рыв­ной на от­рез­ке функ­ции

Непре­рыв­ность функ­ции на про­ме­жут­ке озна­ча­ет: гра­фик сплош­ной, без про­ко­лов и скач­ков (см. рис.10).

Рис. 11. Гра­фик функ­ции 

При­мер функ­ции, ко­то­рая не яв­ля­ет­ся непре­рыв­ной (см. рис. 11):

.

.

 Пример конкретной функции

По­стро­ить гра­фик функ­ции  и «про­честь» его, ука­зать .

 

Ре­ше­ние. Гра­фик функ­ции на рис. 12.

 .

Ответ: 1) ;

2) ;

3)  воз­рас­та­ет при ;

4)  убы­ва­ет при ;

5) .

 

Рис. 12. Гра­фик функ­ции 

Источник конспекта: http://interneturok.ru/ru/school/algebra/9-klass/chislovye-funktsii/osnovnye-svoystva-chislovyh-funktsiy?konspekt&chapter_id=34

Источник видео: http://www.youtube.com/watch?v=a0mAu81FgJ0

Источник презентации: http://nsportal.ru/shkola/algebra/library/2011/12/10/svoystva-funktsiy-algebra-9-klass-ag-mordkovich

Файлы