Генерирование электрической энергии. Трансформаторы. 11 класс. Физика.
Генерирование электрической энергии. Трансформаторы. 11 класс. Физика.
Комментарии преподавателя
Генератор электрического тока
В основе явления электромагнитной индукции лежит возникновение индукционного тока в контуре при изменении магнитного потока, пронизывающего этот контур. Таким образом, если создать систему, в которой магнитный поток, пронизывающий контур, меняется постоянным образом, то такая система генерировала бы электрический ток непрерывно. При этом совершенно неважно, происходит ли движение магнита относительно контура или движение контура относительно магнита.
Машина, в которой магнитный поток, пронизывающий контур, меняется непрерывно периодическим образом, при этом генерируя электрический ток, называется генератором электрического тока.
Рис. 1. Генератор электрического тока
На рисунке 1 представлена модель генератора переменного тока. В этой модели две токопроводящие катушки (1) закреплены на валу и могут вращаться между полюсами магнитов (2). Вал соединен с помощью ременной передачи (3) с колесом (4), которое приводится во вращение вручную. Другой конец вала имеет скользящие контакты (5) (контакты с выводами катушки). На скользящих контактах возникает электрическое напряжение, приблизительно равное ЭДС индукции. Вращающаяся часть генератора называется ротор, неподвижная – статор.
Рис. 2. Гидроэлектростанция
Рис. 3. Теплоэлектростанция
Виды электростанций
По принципу представленной модели работают все генераторы переменного тока, в частности и самые мощные, которые называются электростанциями. В зависимости от способа, которым приводится во вращение ротор электростанции, они подразделяются на разные типы. На гидроэлектростанциях (см. Рис. 2) вращение ротора происходит за счет энергии падающей воды; на теплоэлектростанциях (см. Рис. 3) – за счет работы водяного пара, получаемого при сжигании топлива; на атомных электростанциях – также за счет работы водяного пара, который получается из-за выделения атомной энергии.
Одним из первых конструкторов гидроэлектростанции был английский промышленник и инженер Джозеф Свон. Он владел поместьем, по территории которого протекала река. На берегу реки англичанин установил водяное колесо, которое приводило во вращение катушку, расположенную между двумя большими магнитами. К катушке Свон присоединил провода и впервые в истории человечества осветил собственный дом электрическим светом.
Известно, что при протекании электрического тока в проводнике выделяется тепло (по закону Джоуля – Ленца), следовательно, происходят потери энергии. Если учесть, что между электростанцией и потребителем протягивают линии электропередач на очень большие расстояния, то в этих проводах должны происходить очень большие потери энергии.
Способы повышения эффективности электростанции и понижения потерь энергии обсудим на следующих уроках, посвященных электромагнитной индукции.
Трансформатор
Основы теории трансформаторов
Во время рассмотрения открытия электромагнитной индукции мы обращались к опытам Фарадея. На один сердечник были намотаны две катушки: одна сверху другой, при этом внутренняя катушка оказывалась в магнитном поле внешней катушки (рис. 1.). Это и был первый шаг на пути создания трансформатора.
Рис. 1. Трансформатор
Схема трансформатора впервые появилась в работах Фарадея и Джозефа Генри. Однако ни один учёный не отмечал в возможностях изменение напряжений и тока – трансформирование переменного тока.
30 ноября 1876 г. считается датой рождения первого трансформатора. В этот день П. Н. Яблочков (рис. 2) получил патент на изобретение данного устройства. После этого возник научный интерес к изучению переменного тока. И, как следствие, возник интерес к изучению металлических, неметаллических, магнитных материалов и созданию о них теорий.
Рис. 2. Яблочков П. Н.
Рассмотрим некоторые основы теории трансформаторов. Трансформатор – это техническое устройство, предназначенное для преобразования переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз. Любой трансформатор (рис. 3) состоит из системы катушек и сердечника.
Рис. 3. Трансформатор |
Рис. 4. Схема трансформатора |
Базовый принцип действия трансформатора (рис. 4) состоит в том, что в основе его работы лежит явление электромагнитной индукции. Одну из катушек – первичную – подключают к источнику переменного тока. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток, пронизывающий сердечник – магнитопровод. Изменяющийся в сердечнике магнитный поток создаёт ЭДС индукции во второй катушке. Эта ЭДС индукции создаёт во вторичной обмотке переменный ток.
На рис. 5 приведена принципиальная схема трансформатора. Так трансформатор обозначается следующим образом: центральная широкая линия соответствует сердечнику, первичная обмотка, обычно слева, и вторичная обмотка – справа, число полуокружностей в очень грубом приближении символизирует число витков в обмотке.
Рис. 5.
Холостой режим
Существует два режима работы трансформатора. Рассмотрим ситуацию, при которой вторичная обмотка не замкнута на нагрузку потребителя. Такой режим работы называется холостой ход. При пропускании переменного тока через первичную обмотку в сердечнике возникает переменный магнитный поток. Сердечник устроен таким образом, чтобы магнитный поток полностью оставался внутри этого сердечника. Мгновенное значение ЭДС индукции в любом витке будет равно первой производной магнитного потока со знаком минус.
(1)
Если поток меняется по гармоническому закону, то и ЭДС индукции будет меняться по гармоническому закону, но со сдвигом фазы 90°.
(2)
(3)
В первичной обмотке с числом витков N1 полная ЭДС индукции будет равна произведению мгновенного значения ЭДС на число витков в этой обмотке.
(4)
Во вторичной обмотке суммарное значение ЭДС также будет равно произведению мгновенного значения ЭДС на число витков во вторичной обмотке.
(5)
Отношение ЭДС в первичной обмотке к ЭДС в вторичной обмотке равно отношению числа витков в первичной и вторичной обмотках.
(6)
Поскольку обычно электрическое сопротивление обмоток трансформатора – достаточно малая величина, которой можно пренебречь, то модуль напряжения на зажимах первичной катушки приблизительно равен ЭДС индукции первичной катушки.
(7)
При холостом ходе вторичная обмотка не замкнута – ток в ней не протекает, следовательно, напряжение между зажимами вторичной обмотки равно ЭДС индукции в этой обмотке.
(8)
Мгновенные значения ЭДС в обеих обмотках изменяются синфазно: одновременно достигают максимума, минимума и проходят через ноль. Следовательно, отношение ЭДС в обеих обмотках можно заменить на отношение двух действующих напряжений в них. Так, для двух катушек трансформатора отношение числа витков – величина постоянная – коэффициент трансформации (K).
(9)
Если K > 1, напряжение на зажимах вторичной катушки меньше, чем напряжение на зажимах первичной, а трансформатор с таким коэффициентом – понижающий. Если K < 1, напряжение на зажимах вторичной обмотки больше, чем напряжение на зажимах первичной обмотки, и трансформатор – повышающий.
В режиме холостого хода, когда вторичная обмотка не подключена к нагрузке, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение, подаваемое от источника, и при этом ток в первичной обмотке крайне маленький. В режиме холостого хода ток в первичной обмотке характеризует величину потерь в сердечнике. При этом мощность потерь можно вычислить путём умножения тока холостого хода на напряжение, подаваемое от источника.
Режим работы с нагрузкой
Рассмотрим теперь второй режим работы трансформатора – режим с нагрузкой. В этом режиме вторичная обмотка подведена к нагрузке потребителя. При подключении нагрузки во вторичной обмотке возникает электрический ток, который своим магнитным полем препятствует изменению магнитного потока в первичной обмотке. В результате, в первичной обмотке нарушается равенство ЭДС индукции и ЭДС источника. Как следствие, в первичной обмотке начинает возрастать электрический ток. Возрастает он до тех пор, пока магнитный поток не достигнет практически прежнего значения. Увеличение тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии – потери энергии в катушке, присоединённой ко вторичной обмотке, компенсируются потреблением от источника питания точно такой же энергии. Мощность первичной цепи при нагрузке трансформатора приблизительно равна мощности во вторичной цепи.
(10)
Получим, что отношение напряжений на катушках трансформатора приблизительно равно обратному отношению токов в этих катушках:
(11)
Таким образом, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем ток.
Известно, что для создания трансформаторов необходимо хорошо знать свойства материалов. На сегодня потери в некоторых трансформаторах составляют 2–3% от мощности источника. В крупных силовых трансформаторах эти потери могут иметь большие значения, и для их работы используют мощные системы охлаждения.
Итоги
1. Трансформаторы – это технические устройства, работающие на явлении электромагнитной индукции и состоящие из нескольких катушек, намотанных на общий сердечник. Трансформаторы предназначены для повышения или понижения напряжения, подаваемого на первичную обмотку.
2. В режиме холостого хода отношение действующих на зажимах катушек напряжений равно отношению числа витков в первичной и вторичной обмотках. Это отношение является числом, постоянным для данного трансформатора, и называется коэффициентом трансформации.
3. В режиме работы с нагрузкой мощности токов в обеих катушках приблизительно равны, и отношение действующих напряжений на зажимах катушек равно обратному отношению токов в этих катушках.
К занятию прикреплен файл «Это интересно!». Вы можете скачать файл в любое удобное для вас время.
Использованные источники:
- http://interneturok.ru/ru/school/physics/11-klass/
- http://www.umnik-umnica.com/ru/school/physics/11-klass
- http://www.youtube.com/watch?v=illIQJ_-JJg