5 класс. Математика. Среднее арифметическое.
5 класс. Математика. Среднее арифметическое.
Комментарии преподавателя
Этот урок посвящён изучению понятия среднее арифметическое. Мы узнаем определение этого понятия, разберём несколько задач на его нахождение, а также узнаем, как можно применять среднее арифметическое на практике, в повседневной жизни.
Задача 1
Трое детей пошли в лес за ягодами. Старшая дочь нашла 18 ягод, средняя – 15, а младший брат – 3 ягоды (см. рис. 1). Принесли ягоды маме, которая решила разделить ягоды поровну. Сколько ягод получил каждый из детей?
Рис. 1. Иллюстрация к задаче
Решение
1) Необходимо подсчитать общее количество ягод:
(яг.) – всего собрали дети
2) Разделим общее количество ягод на количество детей:
(яг.) досталось каждому ребёнку
Ответ: каждый ребёнок получит по 12 ягод.
В задаче 1 полученное в ответе число – это среднее арифметическое.
Среднее арифметическое
Средним арифметическим нескольких чисел называется частное от деления суммы этих чисел на их количество.
Пример 1
Мы имеем два числа: 10 и 12. Найти их среднее арифметическое.
Решение
1) Определим сумму этих чисел: .
2) Количество этих чисел равно 2, следовательно, среднее арифметическое этих чисел равно: .
Ответ: среднее арифметическое чисел 10 и 12 – это число 11.
Пример 2
Мы имеем пять чисел: 1, 2, 3, 4 и 5. Найти их среднее арифметическое.
Решение
1) Сумма этих чисел равна: .
2) По определению среднее арифметическое – это частное от деления суммы чисел на их количество. Мы имеем пять чисел, поэтому среднее арифметическое равно:
Ответ: среднее арифметическое данных в условии чисел равно 3.
Для чего нужно знать среднее арифметическое?
Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в повседневной жизни. Например, предположим, что мы хотим поехать на отдых в Грецию. Для выбора подходящёй одежды мы смотрим, какая температуру в этой стране в данный момент. Однако мы не узнаем общей картины погоды. Поэтому необходимо узнать температуру воздуха в Греции, например, за неделю, и найти среднее арифметическое этих температур.
Пример 3
Температура в Греции за неделю: понедельник – ; вторник – ; среда – ; четверг – ; пятница – ; суббота – ; воскресенье – . Посчитать среднюю температуру за неделю.
Решение
1) Вычислим сумму температур: .
2) Разделим полученную сумму на количество дней: .
Ответ: средняя температура за неделю около .
Умение находить среднее арифметическое также может понадобиться для определения среднего возраста игроков футбольной команды, то есть для того чтобы установить, опытная команда или нет. Необходимо просуммировать возраст всех игроков и разделить на их количество.
Задача 2
Купец продавал яблоки. Сначала он продавал их по цене 85 рублей за 1 кг. Так он продал 12 кг. Затем он снизил цену до 65 рублей и продал оставшиеся 4 кг яблок. Какая была средняя цена за яблоки?
Решение
1) Посчитаем, сколько денег всего заработал купец. 12 килограмм он продал по цене 85 рублей за 1 кг: (руб.).
4 килограмма он продал по цене 65 рублей за 1 кг: (руб.).
Следовательно, общая сумма заработанных денег равна: (руб.).
2) Общий вес проданных яблок равен: .
3) Разделим полученную сумму денег на общий вес проданных яблок и получим среднюю цену за 1 кг яблок: (руб.).
Ответ: средняя цена 1 кг проданных яблок – 80 рублей.
Пример случая, когда нельзя применять понятие среднее арифметическое.
Среднее арифметическое помогает оценить данные в целом, не беря каждое значение по отдельности.
Однако не всегда можно пользоваться понятием среднее арифметическое.
Пример 4
Стрелок сделал два выстрела по мишени (см. рис. 2): в первый раз он попал на метр выше мишени, а во второй – на метр ниже. Среднее арифметическое покажет, что он попал точно в центр, хотя он промахнулся оба раза.
Рис. 2. Иллюстрация к примеру
Источник видео: http://www.youtube.com/watch?v=6RYC9k4c-Pg
Источник конспекта: http://interneturok.ru/ru/school/matematika/5-klass/umnozhenie-i-delenie-desyatichnyh-drobey/srednee-arifmeticheskoe?konspekt&chapter_id=1898