10 класс. Алгебра. Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке.
10 класс. Алгебра. Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке.
Комментарии преподавателя
Применение производной для отыскания наибольшего и наименьшего значений непрерывной функции на промежутке
1. Введение. Постановка задачи
На этом занятии рассмотрим более простую задачу, а именно, будет задан промежуток, будет задана непрерывная функция на этом промежутке. Надо узнать наибольшее и наименьшее значение заданной функции на заданном промежутке.
2. Нахождение наибольшего и наименьшего значений функции без производной
№ 32.1 (б). Дано: , . Нарисуем график функции (см. рис.1).
Рис. 1. График функции .
Известно, что эта функция возрастает на промежутке , значит, она возрастает и на отрезке . А значит, если найти значение функции в точках и , то будут известны пределы изменения данной функции, ее самое большое и самое маленькое значение.
Когда аргумент возрастает от до 8, функция возрастает от до .
Ответ: ; .
3. Нахождение наибольшего и наименьшего значений тригонометрической функции
№ 32.2 (а) Дано: Найти наибольшее и наименьшее значения функции на заданном промежутке.
Построим график этой функции (см. рис.2).
Если аргумент меняется на промежутке , то функция возрастает от -2 до 2. Если аргумент возрастает от , то функция убывает от 2 до 0.
Рис. 2. График функции .
Найдем производную .
, . Если , то и это значение принадлежит заданному отрезку . Если , то . Легко проверить, если принимает другие значения, соответствующие стационарные точки выходят за пределы заданного отрезка. Сравним значения функции на концах отрезка и в отобранных точках, в которых производная равна нулю. Найдем
;
;
.
Ответ: ;.
Итак, ответ получен. Производную в данном случае можно использовать, можно не использовать, применить свойства функции, которые были изучены ранее. Так бывает не всегда, иногда применение производной – это единственный метод, который позволяет решать подобные задачи.
4. Нахождение наибольшего и наименьшего значений функции с помощью производной
№ 32.10 (а)
Дано: , . Найти наибольшее и наименьшее значение функции на данном отрезке.
Если в предыдущем случае можно было обойтись без производной – мы знали, как себя ведет функция, то в данном случае функция довольно сложная. Поэтому, ту методику, которую мы упомянули на предыдущей задаче, применим в полном объеме.
1. Найдем производную . Найдем критические точки , отсюда , - критические точки. Из них выбираем те, которые принадлежат данному отрезку: . Сравним значение функции в точках , , . Для этого найдем
;
;
.
Проиллюстрируем результат на рисунке (см. рис.3).
Рис. 3. Пределы изменения значений функции
Видим, что если аргумент меняется от 0 до 2, функция изменяется в пределах от -3 до 4. Функция меняется не монотонно: она либо возрастает, либо убывает.
Ответ: ;.
5. Алгоритм решения задачи на нахождение наибольшего и наименьшего значений функции
Итак, на трех примерах была продемонстрирована общая методика нахождения наибольшего и наименьшего значения функции на промежутке, в данном случае – на отрезке.
Алгоритм решения задачи на нахождение наибольшего и наименьшего значений функции:
1. Найти производную функции.
2. Найти критические точки функции и отобрать те точки, которые находятся на заданном отрезке.
3. Найти значения функции на концах отрезка и в отобранных точках.
4. Сравнить эти значения, и выбрать наибольшее и наименьшее.
6. Решение задачи
Рассмотрим еще один пример.
Найти наибольшее и наименьшее значение функции , .
Ранее был рассмотрен график этой функции (см. рис.4).
Рис. 4. График функции .
На промежутке область значения этой функции . Точка - точка максимума. При - функция возрастает, при – функция убывает. Из чертежа видно, что , - не существует.
7. Итог урока
Итак, на уроке рассмотрели задачу о наибольшем и наименьшем значении функции, когда заданным промежутком является отрезок; сформулировали алгоритм решения подобных задач.
ИСТОЧНИК
http://interneturok.ru/ru/school/algebra/10-klass/proizvodnaya/primenenie-proizvodnoy-dlya-nahozhdeniya-naibolshego-i-naimenshego-znacheniy-nepreryvnoy-funktsii-na-promezhutke
http://www.youtube.com/watch?v=ixHUfqhwjnQ
http://www.youtube.com/watch?v=xSMKXPugqUM
http://www.youtube.com/watch?v=HrIyee4FBq4
http://11book.ru/images/shcoolbook_ru/10/10_a_mord_baz.pdf
http://ppt4web.ru/algebra/primenenie-proizvodnojj-dlja-issledovanija-funkcijj.html