10 класс. Геометрия. Признак перпендикулярности двух плоскостей.

10 класс. Геометрия. Признак перпендикулярности двух плоскостей.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то ....

Комментарии преподавателя

 

1. Тема урока Признак перпендикулярности двух плоскостей

Определение. Двугранным углом называется фигура, образованная двумя полуплоскостями, не принадлежащими одной плоскости, и их общей прямой а (а – ребро).

Рис. 1

Рассмотрим две полуплоскости α и β (рис. 1). Их общая граница – l. Указанная фигура называется двугранным углом. Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.

2. Двугранный угол, измерение двугранного угла

Двугранный угол измеряется своим линейным углом. На общем ребре l двугранного угла выберем произвольную точку. В полуплоскостях α и β из этой точки проведем перпендикуляры a и b к прямой l и получим линейный угол двугранного угла.

Прямые a и b образуют четыре угла, равных φ, 180° - φ, φ, 180° - φ. Напомним, углом между прямыми называется наименьший из этих углов.

Определение. Углом между плоскостями называется наименьший из двугранных углов, образованных этими плоскостями. φ – угол между плоскостями α и β, если 

3. Перпендикулярность плоскостей

Определение. Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90°.

Рис. 2

На ребре l выбрана произвольная точка М (рис. 2). Проведем две перпендикулярные прямые МА = а и МВ = b к ребру l в плоскости α и в плоскости β соответственно. Получили угол АМВ. Угол АМВ – это линейный угол двугранного угла. Если угол АМВ равен 90°, то плоскости α и β называются перпендикулярными.

Анализ

Прямая b перпендикулярна прямой l по построению. Прямая b перпендикулярна прямой а, так как угол между плоскостями α и β равен 90°. Получаем, что прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, прямая b перпендикулярна плоскости α.

Аналогично можно доказать, что прямая а перпендикулярна плоскости β. Прямая а перпендикулярна прямой l по построению. Прямая а перпендикулярна прямой b, так как угол между плоскостями α и β равен 90°. Получаем, что прямая а перпендикулярна двум пересекающимся прямым b и l из плоскости β. Значит, прямая а перпендикулярна плоскости β.

4 Признак перпендикулярности плоскостей

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Дано: 

 

Доказать: 

Рис. 3

Доказательство:

Пусть плоскости α и β пересекаются по прямой АС (рис. 3). Чтобы доказать, что плоскости взаимно перпендикулярны, нужно построить линейный угол между ними и показать, что этот угол равен 90°.

Прямая АВ перпендикулярна по условию плоскости β, а значит, и прямой АС, лежащей в плоскости β.

Проведем прямую АD перпендикулярно прямой АС в плоскости β. Тогда ВАD –линейный угол двугранного угла.

Прямая АВ перпендикулярна плоскости β, а значит, и прямой АD, лежащей в плоскости β. Значит, линейный угол ВАD равен 90°. Значит, плоскости α и β перпендикулярны, что и требовалось доказать.

5. Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 4).

Дано: 

 

Доказать: 

Рис. 4

Доказательство:

Прямая l перпендикулярна плоскости γ, а плоскость α проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости α и γ перпендикулярны.

Прямая l перпендикулярна плоскости γ, а плоскость β проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости β и γ перпендикулярны.

Следствие доказано.

6. Следствие 2

Плоскость линейного угла перпендикулярна всем элементам соответствующего двугранного угла: ребру и граням.

Дано: 

,

,

.

Доказать:

,

.

Рис. 5

Доказательство:

Мы имеем двугранный угол, образованный полуплоскостями α и β, которые пересекаются по прямой l (l – ребро двугранного угла) (рис. 5).

На ребре l взята точка М, к ребру l проведены два перпендикуляра МА и МВ в плоскостях α и β соответственно. Пусть пересекающиеся прямые МА и МВ образуют плоскость γ. Это и есть плоскость линейного угла.

Прямая l перпендикулярна двум пересекающимся прямым АМ и МВ из плоскости γ по построению. Значит, прямая l перпендикулярна плоскости γ.

Плоскость α проходит через прямую l, которая перпендикулярна γ, значит, .

Аналогично, плоскость β проходит через прямую l, которая перпендикулярна γ, значит, .

Итак, доказано, что плоскость линейного угла перпендикулярна всем его элементам: и ребру, и граням.

7. Утверждение

Если в одной из перпендикулярных плоскостей проведена прямая перпендикулярно к их линии пересечения, то эта прямая перпендикулярна и к другой плоскости.

Дано: ,

.

Доказать: 

Рис. 6

Доказательство:

Пусть в плоскости β проведена прямая b = MB, которая перпендикулярна к линии пересечения плоскостей – l. (рис. 6)

Проведем прямую МА = а перпендикулярно прямой l. Тогда из точки М проведены два перпендикуляра к ребру l в плоскостях α и β. Получаем ∠АМВ – линейный угол двугранного угла. Так как плоскости α и β перпендикулярны, то ∠АМВ = 90°. Значит, прямые а и b перпендикулярны.

Тогда прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая b перпендикулярна плоскости α, что и требовалось доказать.

8. Напоминание определения и признака перпендикулярности прямой и плоскости

Определение. Прямая а называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой из плоскости.

Признак. Если прямая а перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к самой плоскости, а значит, к любой прямой, лежащей в этой плоскости (рис. 7).

Рис. 7

9. Итоги урока

Здесь мы рассмотрели перпендикулярность двух плоскостей, доказали признак перпендикулярности плоскостей.

На следующем уроке мы начнем изучение прямоугольного параллелепипеда.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/10-klass/perpendikulyarnost-pryamyh-i-ploskostejb/priznak-perpendikulyarnosti-dvuh-ploskostey

http://www.youtube.com/watch?v=qqnDb3_nxTY

http://www.youtube.com/watch?v=YjY3IEgiGj8

www.youtube.com/watch?v=C4ZmLp9PBlM

www.youtube.com/watch?v=7Wmy7mYW1LI

http://схемо.рф/upload/sx/568/preview/100.jpg

http://infourok.ru/prezentaciya_po_teme_dvugrannyy_ugol._parallelepiped_dlya_10_klassa.-370205.htm

http://cs14109.vk.me/c7002/v7002704/c2fc/JJL3vWyqsdA.jpg

 

Файлы