8 класс. Геометрия. Признаки параллелограмма. Задачи на параллелограмм.
8 класс. Геометрия. Признаки параллелограмма. Задачи на параллелограмм.
Комментарии преподавателя
Признаки параллелограмма
1. Определение и основные свойства параллелограмма
Начнем с того, что вспомним определение параллелограмма.
Определение. Параллелограмм – четырехугольник, у которого каждые две противоположные стороны параллельны (см. Рис. 1).
Рис. 1. Параллелограмм
Вспомним основные свойства параллелограмма:
Для того, чтобы иметь возможность пользоваться всеми этими свойствами, необходимо быть уверенным, что фигура, о которой идет речь, – параллелограмм. Для этого необходимо знать такие факты, как признаки параллелограмма. Первые два из них мы сегодня и рассмотрим.
2. Первый признак параллелограмма
Теорема. Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник – параллелограмм. .
Рис. 2. Первый признак параллелограмма
Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 2), она разбила его на два треугольника. Запишем, что мы знаем об этих треугольниках:
по первому признаку равенства треугольников.
Из равенства указанных треугольников следует, что по признаку параллельности прямых при пересечении их секущей. Имеем, что:
параллелограмм по определению. Что и требовалось доказать.
Доказано.
3. Второй признак параллелограмма
Теорема. Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник – параллелограмм. .
Рис. 3. Второй признак параллелограмма
Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 3), она разбивает его на два треугольника. Запишем, что мы знаем об этих треугольниках, исходя из формулировки теоремы:
по третьему признаку равенства треугольников.
Из равенства треугольников следует, что и по признаку параллельности прямых при пересечении их секущей. Получаем:
параллелограмм по определению. Что и требовалось доказать.
Доказано.
4. Пример на применение первого признака параллелограмма
Рассмотрим пример на применение признаков параллелограмма.
Пример 1. В выпуклом четырехугольнике Найти: а) углы четырехугольника; б) сторону .
Решение. Изобразим Рис. 4.
Рис. 4
параллелограмм по первому признаку параллелограмма.
А. по свойству параллелограмма о противоположных углах, по свойству параллелограмма о сумме углов, прилежащих к одной стороне.
Б. по свойству равенства противоположных сторон.
Ответ. .
ретий признак параллелограмма
5. Повторение: определение и свойства параллелограмма
Напомним, что параллелограмм – это четырёхугольник, у которого противоположные стороны попарно параллельны. То есть, если – параллелограмм, то (см. Рис. 1).
Рис. 1
Параллелограмм обладает целым рядом свойств: противоположные углы равны (), противоположные стороны равны (). Кроме того, диагонали параллелограмма в точке пересечения делятся пополам, сумма углов, прилежащих к любой стороне параллелограмма, равна и т.д.
Но для того, чтобы пользоваться всеми этими свойствами, необходимо быть абсолютно уверенными в том, что рассматриваемый четырёхугольник – параллелограмм. Для этого и существуют признаки параллелограмма: то есть те факты, из которых можно сделать однозначный вывод, что четырёхугольник является параллелограммом. На предыдущем уроке мы уже рассмотрели два признака. Сейчас рассмотрим третий.
6. Третий признак параллелограмма и его доказательство
Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом.
Дано:
– четырёхугольник; ; .
Доказать:
– параллелограмм.
Доказательство:
Для того чтобы доказать данный факт, необходимо доказать параллельность сторон параллелограмма. А параллельность прямых чаще всего доказывается через равенство внутренних накрест лежащих углов при этих прямых. Таким образом, напрашивается следующий способ доказательства третьего признака параллелограмма: через равенство треугольников .
Докажем равенство этих треугольников. Действительно, из условия следует: . Кроме того, поскольку углы – вертикальные, то они равны. То есть:
(первый признак равенстватреугольников – по двум сторонам и углу между ними).
Из равенства треугольников: (так как равны внутренние накрест лежащие углы при этих прямых и секущей ). Кроме того, из равенства треугольников следует, что . Значит, мы получили, что в четырёхугольнике две стороны равны и параллельны. По первому признаку параллелограмма: – параллелограмм.
Доказано.
7. Пример задачи на третий признак параллелограмма и обобщение
Рассмотрим пример на применение третьего признака параллелограмма.
Пример 1
Дано:
– параллелограмм; . – середина , – середина , – середина , – середина (см. Рис. 2).
Рис. 2
Доказать: – параллелограмм.
Доказательство:
Значит, в четырёхугольнике диагонали в точке пересечения делятся пополам. По третьему признаку параллелограмма из этого следует, что – параллелограмм.
Доказано.
Если провести анализ третьего признака параллелограмма, то можно заметить, что этот признак соответствует свойству параллелограмма. То есть, то, что диагонали делятся пополам, является не просто свойством параллелограмма, а его отличительным, характеристическим свойством, по которому его можно выделить из множества четырёхугольников.
ИСТОЧНИК
http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/priznaki-parallelogramma
http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/tretiy-priznak-parallelogramma
http://www.youtube.com/watch?v=ojF6lnr9MxI
http://www.youtube.com/watch?v=x4Fd69y9oLU
http://www.uchportfolio.ru/users_content/675f9820626f5bc0afb47b57890b466e/images/46TThxQ8j4Y.jpg
http://cs10002.vk.me/u31195134/116260458/x_56d40dd3.jpg
http://wwww.tepka.ru/geometriya/16.1.gif