Статистика. Показатели концентрации и дифференциации.

Статистика. Показатели концентрации и дифференциации.

Видео лекция по теме "Показатели концентрации и дифференциации". Читает доцент, кандидат физико-математических наук Бояршинов Б.С.

Комментарии преподавателя

Показатели дифференциации и концентрации

Анализ вариации в рядах распределения целесообразно дополнить показателями дифференциации.

Для оценки дифференциации значений признака ряда используются децильный коэффициент дифференциации и коэффициент фондов.

Децильный коэффициентравен отношению девятой децили к первой децили. Децильный коэффициент широко применяют при измерении соотношения уровней дохода 10% наиболее обеспеченного и 10% наименее обеспеченного населения (в разах).

Коэффициент фондовравен отношению среднего уровня 10-й децили к среднему уровню 1-й децили. Он дает более точный уровень дифференциации.

Государственная статистика регулярно публикует коэффициент фондов для характеристики дифференциации доходов. Однако в исследовательской работе чаще используется децильный коэффициент дифференциации. Его применение особенно эффективно в случае, если, например, в распределении доходов в начале первого дециля присутствуют крайне низкие доходы, а десятый дециль завершается аномально высокими доходами, которые существенно влияют на сумму доходов в этих децилях. В такой ситуации правильнее применять децильный коэффициент дифференциации, а не коэффициент фондов.

К показателям дифференциации близки по значению показатели концентрации: коэффициент Джини и коэффициент Герфиндаля.

Коэффициент концентрации Джинирассчитывается по формуле:

(6.27)

где pi– накопленная доля (частость) численности единиц ряда

qi – накопленная доля значений признака, приходящаяся на все единицы ряда со значеними признака не болееxi.2

Коэффициент Джини может принимать значения от 0 до 1, поэтому результат следует разделить либо на 100, если pi илиqiвыражен в процентах, либо на 10000, если оба показателя выражены в процентах. Чем больше концентрация признака, тем ближе коэффициент Джини к 1. Коэффициент Джини используют для характеристики степени неравномерности распределения совокупности (например, населения) по уровню признака (например, доходов).

Коэффициент Герфиндалявычисляется на основе данных о доле изучаемого признака вi-той группе в совокупном объеме признака:

или ,(6.28)

где – доля выручкиi-той группы в общем объеме всех значений признака;

–объём значений признака в i-той группе.

Показатель Нзависит от числа единиц в группах.

Пример 6.6. Имеются данные о полученной балансовой прибыли 50 крупнейших банков России (по состоянию на 01.01.1998 г.) (в млн. руб.):

1

-

974,2

11

-

188,8

21

-

143,9

31

-

85,4

41

-

69,3

2

-

609,2

12

-

187,3

22

-

134,6

32

-

84,5

42

-

66,4

3

-

588,3

13

-

186,8

23

-

120,9

33

-

82,4

43

-

66,2

4

-

562,9

14

-

171,1

24

-

112,2

34

-

79,6

44

-

59,7

5

-

436,3

15

-

167,9

25

-

108,5

35

-

74,3

45

-

59,1

6

-

432,5

16

-

164,3

26

-

101,6

36

-

74,0

46

-

58,3

7

-

283,6

17

-

160,3

27

-

101,3

37

-

73,5

47

-

57,4

8

-

265,8

18

-

159,9

28

-

97,4

38

-

73,2

48

-

53,8

9

-

231,5

19

-

157,5

29

-

97,4

39

-

73,0

49

-

51,4

10

-

211,7

20

-

147,6

30

-

92,0

40

-

71,5

50

-

51,2

Величина балансовой прибыли Сбербанка России на 01.07.97 – 4353,283 млн. руб.

  1. Постройте вариационный ряд, образовав 7-8 интервалов произвольно.

  2. Рассчитайте средний размер балансовой прибыли на один банк на основе средней арифметической, моды и медианы.

  3. Рассчитайте показатели вариации.

  4. Измерьте дифференциацию банков на основе децильного коэффициента и коэффициента фондов.

  5. Рассчитайте коэффициент концентрации Джини и Герфиндаля.

Решение:

1. Распределение 50 банков РФ по размеру балансовой прибыли (БП) на 01.01.1998 г.

БП, млн. руб.

xk-1-xk

Коли-чество банков

Сере-дина интер-

вала

xi

xifi

На-копл. час-тоты

Vi, %

На-копл. час-тос-

ти

pi

Доля БП групп банков в общем объеме БП

fi

в %

к

ито-

гу

на-

раст.

ито-

гом,

qi

А

1

2

3

4

5

6

7

8

9

10

50-60

7

14

55

385

7

14

0,042

0,042

0,02

116487

60-80

10

20

70

700

17

34

0,076

0,118

0,006

129960

80-100

6

12

90

540

23

46

0,059

0,177

0,003

53016

100-150

8

16

125

1000

31

62

0,109

0,286

0,012

27848

150-300

13

26

225

2925

44

88

0,318

0,604

0,101

21853

300-500

2

4

400

800

46

92

0,087

0,691

0,008

93312

500-800

3

6

650

1950

49

98

0,212

0,902

0,045

651468

800-1000

1

2

900

900

50

100

0,098

1,0

0,010

512656

Итого

50

100

-

9200

-

-

1

-

0,187

1606600

2. Средние показатели:

а) средний размер балансовой прибыли на один банк рассчитаем по средней арифметической взвешенной:

б) моду рассчитаем по формуле (5.6):

.

Модальный интервал – 150-300, т.к. частота этого интервала, равная 13, является максимальной.

;

в) медиану рассчитаем по формуле (5.5):

.

Медианный интервал – 100-150, т.к. накопленная частота этого интервала, равная 31, - первая накопленная частота, превышающая половину суммы частот ряда.

3. Показатели вариации:

а) дисперсия (по формуле 6.6):

=;

б) среднее квадратическое отклонение (по формуле 6.7):

;

в) коэффициент вариации (по формуле 6.11):

V>35%, что свидетельствует о неоднородности совокупности.

4. Показатели дифференциации:

а) для нахождения децильного коэффициента определим вначале первый и девятый децили по формуле 5.4:

.

Интервал, соответствующий первому децилю, – 50-60, т.к. накопленная частота этого интервала, равная 7, первая накопленная частота, превышающая 0,1 суммы частот.

Интервал, соответствующий девятому децилю, – 300-500, т.к. накопленная частота этого интервала, равная 14, первая накопленная частота, превышающая 0,9 суммы частот.

Тогда децильный коэффициент составит: ;

б) т.к. 10% самых крупных и 10% самых мелких банков составляют одну и ту же величину (в нашем примере ), то фондовый коэффициент составит (по данным исходной таблицы):

.

5. Показатели концентрации:

а) коэффициент Джини рассчитаем по формуле 6.27, произведя предварительные расчеты

1,652

1,428

6,018

5,428

13,156

10,974

37,448

25,168

60,808

55,568

82,984

67,718

98

90,02

;

б) коэффициент Герфиндаля определим по формуле 6.28 (см. итог гр 9):

.

Пример 6.7.Для иллюстрации принципа расчета коэффициентов Джини и Герфиндаля воспользуемся данными выборочного обследования дневной выручки 20 продуктовых магазинов (тыс. руб.):

Номера мага-зинов

i

Значения признака (выручка магазина)

хi

Накоп-ленные значения признака

Накоп-ленная доля

значений

признака

qi

Накоп-ленная доля численности единиц ряда:

pi

 

 

 

 

1

9

9

0,022

0,05

0,002

-

0,0005

2

9

18

0,044

0,1

0,007

0,002

0,0005

3

11

29

0,071

0,15

0,014

0,007

0,0007

4

12

41

0,1

0,2

0,025

0,015

0,0009

5

15

56

0,137

0,25

0,041

0,027

0,0013

6

16

72

0,176

0,3

0,062

0,044

0,0015

7

17

89

0,218

0,35

0,087

0,065

0,0017

8

18

107

0,262

0,4

0,118

0,092

0,0019

9

19

126

0,308

0,45

0,154

0,123

0,0021

10

21

147

0,359

0,5

0,198

0,162

0,0026

11

21

168

0,411

0,55

0,246

0,205

0,0026

12

25

193

0,472

0,6

0,307

0,296

0,0037

13

25

218

0,533

0,65

0,373

0,320

0,0037

14

26

244

0,597

0,7

0,447

0,388

0,0040

15

26

270

0,66

0,75

0,528

0,462

0,0040

16

26

296

0,724

0,8

0,615

0,543

0,0040

17

26

322

0,787

0,85

0,709

0,630

0,0040

18

27

349

0,853

0,9

0,811

0,725

0,0044

19

30

379

0,927

0,95

0,927

0,834

0,0054

20

30

409

1,0

1,0

-

0,95

0,0054

       

5,670

5,584

0,05528

Коэффициент Джини равен 0,086, что свидетельствует о невысоком уровне концентрации выручки магазинов. Значение коэффициента Герфиндаля, равное 0,05528, подтверждает этот вывод.

Следует отметить, что приведенные расчеты носят исключительно иллюстративный характер, поскольку экономический смысл коэффициентов Джини и Герфиндаля наиболее полно проявляется лишь при проведении сравнений исследуемых явлений во времени и в пространстве. Например, коэффициента Джини для характеристики дифференциации доходов населения в различных регионах РФ или странах, коэффициента Герфиндаля для характеристики концентрации производства, капитала. Основное достоинство коэффициента Герфиндаля – его высокая чувствительность к изменению в суммарном обороте долей крупнейших участников, что позволяет отслеживать концентрацию рыночного оборота и реагирует на число участников рынка. Коэффициент Герфиндаля может быть использован в качестве меры диверсификации кредитного портфеля банка. Чем меньше значение коэффициента Герфиндаля, т.е. чем больше диверсифицирован кредитный портфель, тем ниже могут быть требования по капиталу к кредитному портфелю.

Источник видео: https://www.youtube.com/watch?v=zmzntFWB_fE

Источник конспекта: http://www.studfiles.ru/preview/2917765/page:2/

Файлы

Нет дополнительных материалов для этого занятия.