Физик и электроника. Тепловые двигатели: принцип действия и КПД.

Физик и электроника. Тепловые двигатели: принцип действия и КПД.

Комментарии преподавателя

Прин­цип дей­ствия теп­ло­во­го дви­га­те­ля

1. Тепловые двигатели

Опре­де­ле­ние. Теп­ло­вой дви­га­тель – устрой­ство, в ко­то­ром внут­рен­няя энер­гия топ­ли­ва пре­об­ра­зу­ет­ся в ме­ха­ни­че­скую ра­бо­ту (рис. 1).

Рис. 1. Раз­лич­ные при­ме­ры теп­ло­вых дви­га­те­лей

Как видно из ри­сун­ка, теп­ло­вы­ми дви­га­те­ля­ми яв­ля­ют­ся любые устрой­ства, ра­бо­та­ю­щие по вы­ше­ука­зан­но­му прин­ци­пу, и они ва­рьи­ру­ют­ся от неве­ро­ят­но про­стых до очень слож­ных по кон­струк­ции.

Все без ис­клю­че­ния теп­ло­вые дви­га­те­ли функ­ци­о­наль­но де­лят­ся на три со­став­ля­ю­щие (см. рис. 2):

  • На­гре­ва­тель
  • Ра­бо­чее тело
  • Хо­ло­диль­ник

Рис. 2. Функ­ци­о­наль­ная схема теп­ло­во­го дви­га­те­ля

2. Работа газа в тепловых двигателях

На­гре­ва­те­лем яв­ля­ет­ся про­цесс сго­ра­ния топ­ли­ва, ко­то­рое при сго­ра­нии пе­ре­да­ёт боль­шое ко­ли­че­ство теп­ло­ты  газу, на­гре­вая тот до боль­ших тем­пе­ра­тур. Го­ря­чий газ, ко­то­рый яв­ля­ет­ся ра­бо­чим телом, вслед­ствие по­вы­ше­ния тем­пе­ра­ту­ры, а сле­до­ва­тель­но, и дав­ле­ния, рас­ши­ря­ет­ся, со­вер­шая ра­бо­ту . Ко­неч­но же, так как все­гда су­ще­ству­ет теп­ло­пе­ре­да­ча с кор­пу­сом дви­га­те­ля, окру­жа­ю­щим воз­ду­хом и т. д., ра­бо­та не будет чис­лен­но рав­нять­ся пе­ре­дан­ной теп­ло­те – часть энер­гии  ухо­дит на хо­ло­диль­ник, ко­то­рым, как пра­ви­ло, яв­ля­ет­ся окру­жа­ю­щая среда.

Проще всего можно пред­ста­вить себе про­цесс, про­ис­хо­дя­щий в про­стом ци­лин­дре под по­движ­ным порш­нем (на­при­мер, ци­линдр дви­га­те­ля внут­рен­не­го сго­ра­ния). Есте­ствен­но, чтобы дви­га­тель ра­бо­тал и в нём был смысл, про­цесс дол­жен про­ис­хо­дить цик­ли­че­ски, а не ра­зо­во. То есть после каж­до­го рас­ши­ре­ния газ дол­жен воз­вра­щать­ся в пер­во­на­чаль­ное по­ло­же­ние (рис. 3).

Рис. 3. При­мер цик­ли­че­ской ра­бо­ты теп­ло­во­го дви­га­те­ля

Для того чтобы газ воз­вра­щал­ся в на­чаль­ное по­ло­же­ние, над ним необ­хо­ди­мо вы­пол­нить некую ра­бо­ту (ра­бо­та внеш­них сил). А так как ра­бо­та газа равна ра­бо­те над газом с про­ти­во­по­лож­ным зна­ком, для того чтобы за весь цикл газ вы­пол­нил сум­мар­но по­ло­жи­тель­ную ра­бо­ту (иначе в дви­га­те­ле не было бы смыс­ла), необ­хо­ди­мо, чтобы ра­бо­та внеш­них сил была мень­ше ра­бо­ты газа. То есть гра­фик цик­ли­че­ско­го про­цес­са в ко­ор­ди­на­тах P-V дол­жен иметь вид: за­мкну­тый кон­тур с об­хо­дом по ча­со­вой стрел­ке. При дан­ном усло­вии ра­бо­та газа (на том участ­ке гра­фи­ка, где объём рас­тёт) боль­ше ра­бо­ты над газом (на том участ­ке, где объём умень­ша­ет­ся) (рис. 4).

 

Рис. 4. При­мер гра­фи­ка про­цес­са, про­те­ка­ю­ще­го в теп­ло­вом дви­га­те­ле

Раз мы го­во­рим о неко­ем ме­ха­низ­ме, обя­за­тель­но нужно ска­зать, каков его КПД.

Паровая турбина

В современной технике широко применяют другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.

Ротор паровой турбины

Ротор паровой турбины

Схема устройства простейшей паровой турбины приведена на рисунке 28. На вал 5 насажен диск 4, по ободу которого закреплены лопатки 2. Около лопаток расположены трубы — сопла 1, в которые поступает пар 3 из котла. Струи пара, вырывающиеся из сопел, оказывают значительное давление на лопатки и приводят диск турбины в быстрое вращательное движение.

Схема паровой турбины

Схема паровой турбины

В современных турбинах применяют не один, а несколько дисков, насаженных на общий вал. Пар последовательно проходит через лопатки всех дисков, отдавая каждому из них часть своей энергии.

На электростанциях с турбиной соединён генератор электрического тока. Частота вращения вала турбин достигает 3000 оборотов в минуту, что является очень удобным для приведения в движение генераторов электрического тока.

В нашей стране строят паровые турбины мощностью от нескольких киловатт до 1 200 000 кВт.

Применяют турбины на тепловых электростанциях и на кораблях.

Постепенно находят всё более широкое применение газовые турбины, в которых вместо пара используются продукты сгорания газа.

КПД теплового двигателя

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты. Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Рис. 29

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

КПД теплового двигателя

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 - Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

 

Использованные источники: 

  • https://www.youtube.com/watch?v=AMFRpRQnMRM
  • https://www.youtube.com/watch?v=iDDGCf9eyes
  • https://www.youtube.com/watch?v=Ny2YDArHerY
  • https://www.youtube.com/watch?v=iB-Q3X8idRs

 

Файлы

Нет дополнительных материалов для этого занятия.